Step |
Hyp |
Ref |
Expression |
1 |
|
rdgeq2 |
|- ( y = A -> rec ( ( x e. _V |-> suc x ) , y ) = rec ( ( x e. _V |-> suc x ) , A ) ) |
2 |
1
|
fveq1d |
|- ( y = A -> ( rec ( ( x e. _V |-> suc x ) , y ) ` z ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` z ) ) |
3 |
|
fveq2 |
|- ( z = B -> ( rec ( ( x e. _V |-> suc x ) , A ) ` z ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
4 |
|
df-oadd |
|- +o = ( y e. On , z e. On |-> ( rec ( ( x e. _V |-> suc x ) , y ) ` z ) ) |
5 |
|
fvex |
|- ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) e. _V |
6 |
2 3 4 5
|
ovmpo |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |