Step |
Hyp |
Ref |
Expression |
1 |
|
oaord |
|- ( ( B e. On /\ A e. On /\ C e. On ) -> ( B e. A <-> ( C +o B ) e. ( C +o A ) ) ) |
2 |
1
|
3com12 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. A <-> ( C +o B ) e. ( C +o A ) ) ) |
3 |
2
|
notbid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. B e. A <-> -. ( C +o B ) e. ( C +o A ) ) ) |
4 |
|
ontri1 |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> -. B e. A ) ) |
6 |
|
oacl |
|- ( ( C e. On /\ A e. On ) -> ( C +o A ) e. On ) |
7 |
6
|
ancoms |
|- ( ( A e. On /\ C e. On ) -> ( C +o A ) e. On ) |
8 |
7
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C +o A ) e. On ) |
9 |
|
oacl |
|- ( ( C e. On /\ B e. On ) -> ( C +o B ) e. On ) |
10 |
9
|
ancoms |
|- ( ( B e. On /\ C e. On ) -> ( C +o B ) e. On ) |
11 |
10
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C +o B ) e. On ) |
12 |
|
ontri1 |
|- ( ( ( C +o A ) e. On /\ ( C +o B ) e. On ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
13 |
8 11 12
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
14 |
3 5 13
|
3bitr4d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( C +o A ) C_ ( C +o B ) ) ) |