Step |
Hyp |
Ref |
Expression |
1 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
2 |
1
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) = A ) |
3 |
|
0ss |
|- (/) C_ B |
4 |
|
0elon |
|- (/) e. On |
5 |
|
oaword |
|- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
6 |
5
|
3com13 |
|- ( ( A e. On /\ B e. On /\ (/) e. On ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
7 |
4 6
|
mp3an3 |
|- ( ( A e. On /\ B e. On ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
8 |
3 7
|
mpbii |
|- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) C_ ( A +o B ) ) |
9 |
2 8
|
eqsstrrd |
|- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |