Metamath Proof Explorer


Theorem oaword2

Description: An ordinal is less than or equal to its sum with another. Theorem 21 of Suppes p. 209. (Contributed by NM, 7-Dec-2004)

Ref Expression
Assertion oaword2
|- ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) )

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ B
2 0elon
 |-  (/) e. On
3 oawordri
 |-  ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B -> ( (/) +o A ) C_ ( B +o A ) ) )
4 2 3 mp3an1
 |-  ( ( B e. On /\ A e. On ) -> ( (/) C_ B -> ( (/) +o A ) C_ ( B +o A ) ) )
5 oa0r
 |-  ( A e. On -> ( (/) +o A ) = A )
6 5 adantl
 |-  ( ( B e. On /\ A e. On ) -> ( (/) +o A ) = A )
7 6 sseq1d
 |-  ( ( B e. On /\ A e. On ) -> ( ( (/) +o A ) C_ ( B +o A ) <-> A C_ ( B +o A ) ) )
8 4 7 sylibd
 |-  ( ( B e. On /\ A e. On ) -> ( (/) C_ B -> A C_ ( B +o A ) ) )
9 1 8 mpi
 |-  ( ( B e. On /\ A e. On ) -> A C_ ( B +o A ) )
10 9 ancoms
 |-  ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) )