| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
|- (/) C_ B |
| 2 |
|
0elon |
|- (/) e. On |
| 3 |
|
oawordri |
|- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B -> ( (/) +o A ) C_ ( B +o A ) ) ) |
| 4 |
2 3
|
mp3an1 |
|- ( ( B e. On /\ A e. On ) -> ( (/) C_ B -> ( (/) +o A ) C_ ( B +o A ) ) ) |
| 5 |
|
oa0r |
|- ( A e. On -> ( (/) +o A ) = A ) |
| 6 |
5
|
adantl |
|- ( ( B e. On /\ A e. On ) -> ( (/) +o A ) = A ) |
| 7 |
6
|
sseq1d |
|- ( ( B e. On /\ A e. On ) -> ( ( (/) +o A ) C_ ( B +o A ) <-> A C_ ( B +o A ) ) ) |
| 8 |
4 7
|
sylibd |
|- ( ( B e. On /\ A e. On ) -> ( (/) C_ B -> A C_ ( B +o A ) ) ) |
| 9 |
1 8
|
mpi |
|- ( ( B e. On /\ A e. On ) -> A C_ ( B +o A ) ) |
| 10 |
9
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) ) |