| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oawordeulem.1 |
|- A e. On |
| 2 |
|
oawordeulem.2 |
|- B e. On |
| 3 |
|
oawordeulem.3 |
|- S = { y e. On | B C_ ( A +o y ) } |
| 4 |
3
|
ssrab3 |
|- S C_ On |
| 5 |
|
oaword2 |
|- ( ( B e. On /\ A e. On ) -> B C_ ( A +o B ) ) |
| 6 |
2 1 5
|
mp2an |
|- B C_ ( A +o B ) |
| 7 |
|
oveq2 |
|- ( y = B -> ( A +o y ) = ( A +o B ) ) |
| 8 |
7
|
sseq2d |
|- ( y = B -> ( B C_ ( A +o y ) <-> B C_ ( A +o B ) ) ) |
| 9 |
8 3
|
elrab2 |
|- ( B e. S <-> ( B e. On /\ B C_ ( A +o B ) ) ) |
| 10 |
2 6 9
|
mpbir2an |
|- B e. S |
| 11 |
10
|
ne0ii |
|- S =/= (/) |
| 12 |
|
oninton |
|- ( ( S C_ On /\ S =/= (/) ) -> |^| S e. On ) |
| 13 |
4 11 12
|
mp2an |
|- |^| S e. On |
| 14 |
|
onzsl |
|- ( |^| S e. On <-> ( |^| S = (/) \/ E. z e. On |^| S = suc z \/ ( |^| S e. _V /\ Lim |^| S ) ) ) |
| 15 |
13 14
|
mpbi |
|- ( |^| S = (/) \/ E. z e. On |^| S = suc z \/ ( |^| S e. _V /\ Lim |^| S ) ) |
| 16 |
|
oveq2 |
|- ( |^| S = (/) -> ( A +o |^| S ) = ( A +o (/) ) ) |
| 17 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
| 18 |
1 17
|
ax-mp |
|- ( A +o (/) ) = A |
| 19 |
16 18
|
eqtrdi |
|- ( |^| S = (/) -> ( A +o |^| S ) = A ) |
| 20 |
19
|
sseq1d |
|- ( |^| S = (/) -> ( ( A +o |^| S ) C_ B <-> A C_ B ) ) |
| 21 |
20
|
biimprd |
|- ( |^| S = (/) -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 22 |
|
oveq2 |
|- ( |^| S = suc z -> ( A +o |^| S ) = ( A +o suc z ) ) |
| 23 |
|
oasuc |
|- ( ( A e. On /\ z e. On ) -> ( A +o suc z ) = suc ( A +o z ) ) |
| 24 |
1 23
|
mpan |
|- ( z e. On -> ( A +o suc z ) = suc ( A +o z ) ) |
| 25 |
22 24
|
sylan9eqr |
|- ( ( z e. On /\ |^| S = suc z ) -> ( A +o |^| S ) = suc ( A +o z ) ) |
| 26 |
|
vex |
|- z e. _V |
| 27 |
26
|
sucid |
|- z e. suc z |
| 28 |
|
eleq2 |
|- ( |^| S = suc z -> ( z e. |^| S <-> z e. suc z ) ) |
| 29 |
27 28
|
mpbiri |
|- ( |^| S = suc z -> z e. |^| S ) |
| 30 |
13
|
oneli |
|- ( z e. |^| S -> z e. On ) |
| 31 |
3
|
inteqi |
|- |^| S = |^| { y e. On | B C_ ( A +o y ) } |
| 32 |
31
|
eleq2i |
|- ( z e. |^| S <-> z e. |^| { y e. On | B C_ ( A +o y ) } ) |
| 33 |
|
oveq2 |
|- ( y = z -> ( A +o y ) = ( A +o z ) ) |
| 34 |
33
|
sseq2d |
|- ( y = z -> ( B C_ ( A +o y ) <-> B C_ ( A +o z ) ) ) |
| 35 |
34
|
onnminsb |
|- ( z e. On -> ( z e. |^| { y e. On | B C_ ( A +o y ) } -> -. B C_ ( A +o z ) ) ) |
| 36 |
32 35
|
biimtrid |
|- ( z e. On -> ( z e. |^| S -> -. B C_ ( A +o z ) ) ) |
| 37 |
|
oacl |
|- ( ( A e. On /\ z e. On ) -> ( A +o z ) e. On ) |
| 38 |
1 37
|
mpan |
|- ( z e. On -> ( A +o z ) e. On ) |
| 39 |
|
ontri1 |
|- ( ( B e. On /\ ( A +o z ) e. On ) -> ( B C_ ( A +o z ) <-> -. ( A +o z ) e. B ) ) |
| 40 |
2 38 39
|
sylancr |
|- ( z e. On -> ( B C_ ( A +o z ) <-> -. ( A +o z ) e. B ) ) |
| 41 |
40
|
con2bid |
|- ( z e. On -> ( ( A +o z ) e. B <-> -. B C_ ( A +o z ) ) ) |
| 42 |
36 41
|
sylibrd |
|- ( z e. On -> ( z e. |^| S -> ( A +o z ) e. B ) ) |
| 43 |
30 42
|
mpcom |
|- ( z e. |^| S -> ( A +o z ) e. B ) |
| 44 |
2
|
onordi |
|- Ord B |
| 45 |
|
ordsucss |
|- ( Ord B -> ( ( A +o z ) e. B -> suc ( A +o z ) C_ B ) ) |
| 46 |
44 45
|
ax-mp |
|- ( ( A +o z ) e. B -> suc ( A +o z ) C_ B ) |
| 47 |
29 43 46
|
3syl |
|- ( |^| S = suc z -> suc ( A +o z ) C_ B ) |
| 48 |
47
|
adantl |
|- ( ( z e. On /\ |^| S = suc z ) -> suc ( A +o z ) C_ B ) |
| 49 |
25 48
|
eqsstrd |
|- ( ( z e. On /\ |^| S = suc z ) -> ( A +o |^| S ) C_ B ) |
| 50 |
49
|
rexlimiva |
|- ( E. z e. On |^| S = suc z -> ( A +o |^| S ) C_ B ) |
| 51 |
50
|
a1d |
|- ( E. z e. On |^| S = suc z -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 52 |
|
oalim |
|- ( ( A e. On /\ ( |^| S e. _V /\ Lim |^| S ) ) -> ( A +o |^| S ) = U_ z e. |^| S ( A +o z ) ) |
| 53 |
1 52
|
mpan |
|- ( ( |^| S e. _V /\ Lim |^| S ) -> ( A +o |^| S ) = U_ z e. |^| S ( A +o z ) ) |
| 54 |
|
iunss |
|- ( U_ z e. |^| S ( A +o z ) C_ B <-> A. z e. |^| S ( A +o z ) C_ B ) |
| 55 |
2
|
onelssi |
|- ( ( A +o z ) e. B -> ( A +o z ) C_ B ) |
| 56 |
43 55
|
syl |
|- ( z e. |^| S -> ( A +o z ) C_ B ) |
| 57 |
54 56
|
mprgbir |
|- U_ z e. |^| S ( A +o z ) C_ B |
| 58 |
53 57
|
eqsstrdi |
|- ( ( |^| S e. _V /\ Lim |^| S ) -> ( A +o |^| S ) C_ B ) |
| 59 |
58
|
a1d |
|- ( ( |^| S e. _V /\ Lim |^| S ) -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 60 |
21 51 59
|
3jaoi |
|- ( ( |^| S = (/) \/ E. z e. On |^| S = suc z \/ ( |^| S e. _V /\ Lim |^| S ) ) -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 61 |
15 60
|
ax-mp |
|- ( A C_ B -> ( A +o |^| S ) C_ B ) |
| 62 |
8
|
rspcev |
|- ( ( B e. On /\ B C_ ( A +o B ) ) -> E. y e. On B C_ ( A +o y ) ) |
| 63 |
2 6 62
|
mp2an |
|- E. y e. On B C_ ( A +o y ) |
| 64 |
|
nfcv |
|- F/_ y B |
| 65 |
|
nfcv |
|- F/_ y A |
| 66 |
|
nfcv |
|- F/_ y +o |
| 67 |
|
nfrab1 |
|- F/_ y { y e. On | B C_ ( A +o y ) } |
| 68 |
67
|
nfint |
|- F/_ y |^| { y e. On | B C_ ( A +o y ) } |
| 69 |
65 66 68
|
nfov |
|- F/_ y ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 70 |
64 69
|
nfss |
|- F/ y B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 71 |
|
oveq2 |
|- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( A +o y ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 72 |
71
|
sseq2d |
|- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( B C_ ( A +o y ) <-> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) ) |
| 73 |
70 72
|
onminsb |
|- ( E. y e. On B C_ ( A +o y ) -> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 74 |
63 73
|
ax-mp |
|- B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 75 |
31
|
oveq2i |
|- ( A +o |^| S ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 76 |
74 75
|
sseqtrri |
|- B C_ ( A +o |^| S ) |
| 77 |
|
eqss |
|- ( ( A +o |^| S ) = B <-> ( ( A +o |^| S ) C_ B /\ B C_ ( A +o |^| S ) ) ) |
| 78 |
61 76 77
|
sylanblrc |
|- ( A C_ B -> ( A +o |^| S ) = B ) |
| 79 |
|
oveq2 |
|- ( x = |^| S -> ( A +o x ) = ( A +o |^| S ) ) |
| 80 |
79
|
eqeq1d |
|- ( x = |^| S -> ( ( A +o x ) = B <-> ( A +o |^| S ) = B ) ) |
| 81 |
80
|
rspcev |
|- ( ( |^| S e. On /\ ( A +o |^| S ) = B ) -> E. x e. On ( A +o x ) = B ) |
| 82 |
13 78 81
|
sylancr |
|- ( A C_ B -> E. x e. On ( A +o x ) = B ) |
| 83 |
|
eqtr3 |
|- ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> ( A +o x ) = ( A +o y ) ) |
| 84 |
|
oacan |
|- ( ( A e. On /\ x e. On /\ y e. On ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) |
| 85 |
1 84
|
mp3an1 |
|- ( ( x e. On /\ y e. On ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) |
| 86 |
83 85
|
imbitrid |
|- ( ( x e. On /\ y e. On ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 87 |
86
|
rgen2 |
|- A. x e. On A. y e. On ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) |
| 88 |
|
oveq2 |
|- ( x = y -> ( A +o x ) = ( A +o y ) ) |
| 89 |
88
|
eqeq1d |
|- ( x = y -> ( ( A +o x ) = B <-> ( A +o y ) = B ) ) |
| 90 |
89
|
reu4 |
|- ( E! x e. On ( A +o x ) = B <-> ( E. x e. On ( A +o x ) = B /\ A. x e. On A. y e. On ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) ) |
| 91 |
82 87 90
|
sylanblrc |
|- ( A C_ B -> E! x e. On ( A +o x ) = B ) |