Metamath Proof Explorer


Theorem oawordex

Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59 and its converse. See oawordeu for uniqueness. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oawordex
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) )

Proof

Step Hyp Ref Expression
1 oawordeu
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> E! x e. On ( A +o x ) = B )
2 1 ex
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B -> E! x e. On ( A +o x ) = B ) )
3 reurex
 |-  ( E! x e. On ( A +o x ) = B -> E. x e. On ( A +o x ) = B )
4 2 3 syl6
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B -> E. x e. On ( A +o x ) = B ) )
5 oawordexr
 |-  ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B )
6 5 ex
 |-  ( A e. On -> ( E. x e. On ( A +o x ) = B -> A C_ B ) )
7 6 adantr
 |-  ( ( A e. On /\ B e. On ) -> ( E. x e. On ( A +o x ) = B -> A C_ B ) )
8 4 7 impbid
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) )