Step |
Hyp |
Ref |
Expression |
1 |
|
oawordeu |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> E! x e. On ( A +o x ) = B ) |
2 |
1
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B -> E! x e. On ( A +o x ) = B ) ) |
3 |
|
reurex |
|- ( E! x e. On ( A +o x ) = B -> E. x e. On ( A +o x ) = B ) |
4 |
2 3
|
syl6 |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B -> E. x e. On ( A +o x ) = B ) ) |
5 |
|
oawordexr |
|- ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B ) |
6 |
5
|
ex |
|- ( A e. On -> ( E. x e. On ( A +o x ) = B -> A C_ B ) ) |
7 |
6
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( E. x e. On ( A +o x ) = B -> A C_ B ) ) |
8 |
4 7
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |