Metamath Proof Explorer


Theorem oawordexr

Description: Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oawordexr
|- ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B )

Proof

Step Hyp Ref Expression
1 oaword1
 |-  ( ( A e. On /\ x e. On ) -> A C_ ( A +o x ) )
2 sseq2
 |-  ( ( A +o x ) = B -> ( A C_ ( A +o x ) <-> A C_ B ) )
3 1 2 syl5ibcom
 |-  ( ( A e. On /\ x e. On ) -> ( ( A +o x ) = B -> A C_ B ) )
4 3 rexlimdva
 |-  ( A e. On -> ( E. x e. On ( A +o x ) = B -> A C_ B ) )
5 4 imp
 |-  ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B )