Description: Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | oawordexr | |- ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaword1 | |- ( ( A e. On /\ x e. On ) -> A C_ ( A +o x ) ) |
|
2 | sseq2 | |- ( ( A +o x ) = B -> ( A C_ ( A +o x ) <-> A C_ B ) ) |
|
3 | 1 2 | syl5ibcom | |- ( ( A e. On /\ x e. On ) -> ( ( A +o x ) = B -> A C_ B ) ) |
4 | 3 | rexlimdva | |- ( A e. On -> ( E. x e. On ( A +o x ) = B -> A C_ B ) ) |
5 | 4 | imp | |- ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B ) |