| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
| 2 |
|
oveq2 |
|- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
| 3 |
1 2
|
sseq12d |
|- ( x = (/) -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o (/) ) C_ ( B +o (/) ) ) ) |
| 4 |
|
oveq2 |
|- ( x = y -> ( A +o x ) = ( A +o y ) ) |
| 5 |
|
oveq2 |
|- ( x = y -> ( B +o x ) = ( B +o y ) ) |
| 6 |
4 5
|
sseq12d |
|- ( x = y -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o y ) C_ ( B +o y ) ) ) |
| 7 |
|
oveq2 |
|- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
| 8 |
|
oveq2 |
|- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
| 9 |
7 8
|
sseq12d |
|- ( x = suc y -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 10 |
|
oveq2 |
|- ( x = C -> ( A +o x ) = ( A +o C ) ) |
| 11 |
|
oveq2 |
|- ( x = C -> ( B +o x ) = ( B +o C ) ) |
| 12 |
10 11
|
sseq12d |
|- ( x = C -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o C ) C_ ( B +o C ) ) ) |
| 13 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
| 14 |
13
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) = A ) |
| 15 |
|
oa0 |
|- ( B e. On -> ( B +o (/) ) = B ) |
| 16 |
15
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( B +o (/) ) = B ) |
| 17 |
14 16
|
sseq12d |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o (/) ) C_ ( B +o (/) ) <-> A C_ B ) ) |
| 18 |
17
|
biimpar |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( A +o (/) ) C_ ( B +o (/) ) ) |
| 19 |
|
oacl |
|- ( ( A e. On /\ y e. On ) -> ( A +o y ) e. On ) |
| 20 |
|
eloni |
|- ( ( A +o y ) e. On -> Ord ( A +o y ) ) |
| 21 |
19 20
|
syl |
|- ( ( A e. On /\ y e. On ) -> Ord ( A +o y ) ) |
| 22 |
|
oacl |
|- ( ( B e. On /\ y e. On ) -> ( B +o y ) e. On ) |
| 23 |
|
eloni |
|- ( ( B +o y ) e. On -> Ord ( B +o y ) ) |
| 24 |
22 23
|
syl |
|- ( ( B e. On /\ y e. On ) -> Ord ( B +o y ) ) |
| 25 |
|
ordsucsssuc |
|- ( ( Ord ( A +o y ) /\ Ord ( B +o y ) ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 26 |
21 24 25
|
syl2an |
|- ( ( ( A e. On /\ y e. On ) /\ ( B e. On /\ y e. On ) ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 27 |
26
|
anandirs |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 28 |
|
oasuc |
|- ( ( A e. On /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 29 |
28
|
adantlr |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 30 |
|
oasuc |
|- ( ( B e. On /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 31 |
30
|
adantll |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 32 |
29 31
|
sseq12d |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o suc y ) C_ ( B +o suc y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 33 |
27 32
|
bitr4d |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o y ) C_ ( B +o y ) <-> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 34 |
33
|
biimpd |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 35 |
34
|
expcom |
|- ( y e. On -> ( ( A e. On /\ B e. On ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) |
| 36 |
35
|
adantrd |
|- ( y e. On -> ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) |
| 37 |
|
vex |
|- x e. _V |
| 38 |
|
ss2iun |
|- ( A. y e. x ( A +o y ) C_ ( B +o y ) -> U_ y e. x ( A +o y ) C_ U_ y e. x ( B +o y ) ) |
| 39 |
|
oalim |
|- ( ( A e. On /\ ( x e. _V /\ Lim x ) ) -> ( A +o x ) = U_ y e. x ( A +o y ) ) |
| 40 |
39
|
adantlr |
|- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( A +o x ) = U_ y e. x ( A +o y ) ) |
| 41 |
|
oalim |
|- ( ( B e. On /\ ( x e. _V /\ Lim x ) ) -> ( B +o x ) = U_ y e. x ( B +o y ) ) |
| 42 |
41
|
adantll |
|- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( B +o x ) = U_ y e. x ( B +o y ) ) |
| 43 |
40 42
|
sseq12d |
|- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( ( A +o x ) C_ ( B +o x ) <-> U_ y e. x ( A +o y ) C_ U_ y e. x ( B +o y ) ) ) |
| 44 |
38 43
|
imbitrrid |
|- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) |
| 45 |
37 44
|
mpanr1 |
|- ( ( ( A e. On /\ B e. On ) /\ Lim x ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) |
| 46 |
45
|
expcom |
|- ( Lim x -> ( ( A e. On /\ B e. On ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) ) |
| 47 |
46
|
adantrd |
|- ( Lim x -> ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) ) |
| 48 |
3 6 9 12 18 36 47
|
tfinds3 |
|- ( C e. On -> ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( A +o C ) C_ ( B +o C ) ) ) |
| 49 |
48
|
exp4c |
|- ( C e. On -> ( A e. On -> ( B e. On -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) ) ) |
| 50 |
49
|
3imp231 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) |