Metamath Proof Explorer


Theorem oc0

Description: The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion oc0
|- ( H e. SH -> 0h e. ( _|_ ` H ) )

Proof

Step Hyp Ref Expression
1 shocsh
 |-  ( H e. SH -> ( _|_ ` H ) e. SH )
2 sh0
 |-  ( ( _|_ ` H ) e. SH -> 0h e. ( _|_ ` H ) )
3 1 2 syl
 |-  ( H e. SH -> 0h e. ( _|_ ` H ) )