Step |
Hyp |
Ref |
Expression |
1 |
|
ocsh |
|- ( A C_ ~H -> ( _|_ ` A ) e. SH ) |
2 |
|
ax-hcompl |
|- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
3 |
|
vex |
|- f e. _V |
4 |
|
vex |
|- x e. _V |
5 |
3 4
|
breldm |
|- ( f ~~>v x -> f e. dom ~~>v ) |
6 |
5
|
rexlimivw |
|- ( E. x e. ~H f ~~>v x -> f e. dom ~~>v ) |
7 |
2 6
|
syl |
|- ( f e. Cauchy -> f e. dom ~~>v ) |
8 |
7
|
ad2antlr |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> f e. dom ~~>v ) |
9 |
|
hlimf |
|- ~~>v : dom ~~>v --> ~H |
10 |
9
|
ffvelrni |
|- ( f e. dom ~~>v -> ( ~~>v ` f ) e. ~H ) |
11 |
8 10
|
syl |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ~~>v ` f ) e. ~H ) |
12 |
|
simplll |
|- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> A C_ ~H ) |
13 |
|
simpllr |
|- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> f e. Cauchy ) |
14 |
|
simplr |
|- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> f : NN --> ( _|_ ` A ) ) |
15 |
|
simpr |
|- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> x e. A ) |
16 |
12 13 14 15
|
occllem |
|- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> ( ( ~~>v ` f ) .ih x ) = 0 ) |
17 |
16
|
ralrimiva |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) |
18 |
|
ocel |
|- ( A C_ ~H -> ( ( ~~>v ` f ) e. ( _|_ ` A ) <-> ( ( ~~>v ` f ) e. ~H /\ A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) ) ) |
19 |
18
|
ad2antrr |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ( ~~>v ` f ) e. ( _|_ ` A ) <-> ( ( ~~>v ` f ) e. ~H /\ A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) ) ) |
20 |
11 17 19
|
mpbir2and |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ~~>v ` f ) e. ( _|_ ` A ) ) |
21 |
|
ffun |
|- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
22 |
|
funfvbrb |
|- ( Fun ~~>v -> ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) ) |
23 |
9 21 22
|
mp2b |
|- ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) |
24 |
8 23
|
sylib |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> f ~~>v ( ~~>v ` f ) ) |
25 |
|
breq2 |
|- ( x = ( ~~>v ` f ) -> ( f ~~>v x <-> f ~~>v ( ~~>v ` f ) ) ) |
26 |
25
|
rspcev |
|- ( ( ( ~~>v ` f ) e. ( _|_ ` A ) /\ f ~~>v ( ~~>v ` f ) ) -> E. x e. ( _|_ ` A ) f ~~>v x ) |
27 |
20 24 26
|
syl2anc |
|- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> E. x e. ( _|_ ` A ) f ~~>v x ) |
28 |
27
|
ex |
|- ( ( A C_ ~H /\ f e. Cauchy ) -> ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) |
29 |
28
|
ralrimiva |
|- ( A C_ ~H -> A. f e. Cauchy ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) |
30 |
|
isch3 |
|- ( ( _|_ ` A ) e. CH <-> ( ( _|_ ` A ) e. SH /\ A. f e. Cauchy ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) ) |
31 |
1 29 30
|
sylanbrc |
|- ( A C_ ~H -> ( _|_ ` A ) e. CH ) |