| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocsh |  |-  ( A C_ ~H -> ( _|_ ` A ) e. SH ) | 
						
							| 2 |  | ax-hcompl |  |-  ( f e. Cauchy -> E. x e. ~H f ~~>v x ) | 
						
							| 3 |  | vex |  |-  f e. _V | 
						
							| 4 |  | vex |  |-  x e. _V | 
						
							| 5 | 3 4 | breldm |  |-  ( f ~~>v x -> f e. dom ~~>v ) | 
						
							| 6 | 5 | rexlimivw |  |-  ( E. x e. ~H f ~~>v x -> f e. dom ~~>v ) | 
						
							| 7 | 2 6 | syl |  |-  ( f e. Cauchy -> f e. dom ~~>v ) | 
						
							| 8 | 7 | ad2antlr |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> f e. dom ~~>v ) | 
						
							| 9 |  | hlimf |  |-  ~~>v : dom ~~>v --> ~H | 
						
							| 10 | 9 | ffvelcdmi |  |-  ( f e. dom ~~>v -> ( ~~>v ` f ) e. ~H ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ~~>v ` f ) e. ~H ) | 
						
							| 12 |  | simplll |  |-  ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> A C_ ~H ) | 
						
							| 13 |  | simpllr |  |-  ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> f e. Cauchy ) | 
						
							| 14 |  | simplr |  |-  ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> f : NN --> ( _|_ ` A ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> x e. A ) | 
						
							| 16 | 12 13 14 15 | occllem |  |-  ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> ( ( ~~>v ` f ) .ih x ) = 0 ) | 
						
							| 17 | 16 | ralrimiva |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) | 
						
							| 18 |  | ocel |  |-  ( A C_ ~H -> ( ( ~~>v ` f ) e. ( _|_ ` A ) <-> ( ( ~~>v ` f ) e. ~H /\ A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) ) ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ( ~~>v ` f ) e. ( _|_ ` A ) <-> ( ( ~~>v ` f ) e. ~H /\ A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) ) ) | 
						
							| 20 | 11 17 19 | mpbir2and |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ~~>v ` f ) e. ( _|_ ` A ) ) | 
						
							| 21 |  | ffun |  |-  ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) | 
						
							| 22 |  | funfvbrb |  |-  ( Fun ~~>v -> ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) ) | 
						
							| 23 | 9 21 22 | mp2b |  |-  ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) | 
						
							| 24 | 8 23 | sylib |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> f ~~>v ( ~~>v ` f ) ) | 
						
							| 25 |  | breq2 |  |-  ( x = ( ~~>v ` f ) -> ( f ~~>v x <-> f ~~>v ( ~~>v ` f ) ) ) | 
						
							| 26 | 25 | rspcev |  |-  ( ( ( ~~>v ` f ) e. ( _|_ ` A ) /\ f ~~>v ( ~~>v ` f ) ) -> E. x e. ( _|_ ` A ) f ~~>v x ) | 
						
							| 27 | 20 24 26 | syl2anc |  |-  ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> E. x e. ( _|_ ` A ) f ~~>v x ) | 
						
							| 28 | 27 | ex |  |-  ( ( A C_ ~H /\ f e. Cauchy ) -> ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) | 
						
							| 29 | 28 | ralrimiva |  |-  ( A C_ ~H -> A. f e. Cauchy ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) | 
						
							| 30 |  | isch3 |  |-  ( ( _|_ ` A ) e. CH <-> ( ( _|_ ` A ) e. SH /\ A. f e. Cauchy ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) ) | 
						
							| 31 | 1 29 30 | sylanbrc |  |-  ( A C_ ~H -> ( _|_ ` A ) e. CH ) |