| Step | Hyp | Ref | Expression | 
						
							| 1 |  | occl.1 |  |-  ( ph -> A C_ ~H ) | 
						
							| 2 |  | occl.2 |  |-  ( ph -> F e. Cauchy ) | 
						
							| 3 |  | occl.3 |  |-  ( ph -> F : NN --> ( _|_ ` A ) ) | 
						
							| 4 |  | occl.4 |  |-  ( ph -> B e. A ) | 
						
							| 5 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 6 | 5 | cnfldhaus |  |-  ( TopOpen ` CCfld ) e. Haus | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. Haus ) | 
						
							| 8 |  | ax-hcompl |  |-  ( F e. Cauchy -> E. x e. ~H F ~~>v x ) | 
						
							| 9 |  | hlimf |  |-  ~~>v : dom ~~>v --> ~H | 
						
							| 10 |  | ffn |  |-  ( ~~>v : dom ~~>v --> ~H -> ~~>v Fn dom ~~>v ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ~~>v Fn dom ~~>v | 
						
							| 12 |  | fnbr |  |-  ( ( ~~>v Fn dom ~~>v /\ F ~~>v x ) -> F e. dom ~~>v ) | 
						
							| 13 | 11 12 | mpan |  |-  ( F ~~>v x -> F e. dom ~~>v ) | 
						
							| 14 | 13 | rexlimivw |  |-  ( E. x e. ~H F ~~>v x -> F e. dom ~~>v ) | 
						
							| 15 | 2 8 14 | 3syl |  |-  ( ph -> F e. dom ~~>v ) | 
						
							| 16 |  | ffun |  |-  ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) | 
						
							| 17 |  | funfvbrb |  |-  ( Fun ~~>v -> ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) ) | 
						
							| 18 | 9 16 17 | mp2b |  |-  ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) | 
						
							| 19 | 15 18 | sylib |  |-  ( ph -> F ~~>v ( ~~>v ` F ) ) | 
						
							| 20 |  | eqid |  |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. | 
						
							| 21 |  | eqid |  |-  ( normh o. -h ) = ( normh o. -h ) | 
						
							| 22 | 20 21 | hhims |  |-  ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) | 
						
							| 23 |  | eqid |  |-  ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) | 
						
							| 24 | 20 22 23 | hhlm |  |-  ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) | 
						
							| 25 |  | resss |  |-  ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) | 
						
							| 26 | 24 25 | eqsstri |  |-  ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) | 
						
							| 27 | 26 | ssbri |  |-  ( F ~~>v ( ~~>v ` F ) -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` F ) ) | 
						
							| 28 | 19 27 | syl |  |-  ( ph -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` F ) ) | 
						
							| 29 | 21 | hilxmet |  |-  ( normh o. -h ) e. ( *Met ` ~H ) | 
						
							| 30 | 23 | mopntopon |  |-  ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) | 
						
							| 31 | 29 30 | mp1i |  |-  ( ph -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) | 
						
							| 32 | 31 | cnmptid |  |-  ( ph -> ( x e. ~H |-> x ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) | 
						
							| 33 | 1 4 | sseldd |  |-  ( ph -> B e. ~H ) | 
						
							| 34 | 31 31 33 | cnmptc |  |-  ( ph -> ( x e. ~H |-> B ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) | 
						
							| 35 | 20 | hhnv |  |-  <. <. +h , .h >. , normh >. e. NrmCVec | 
						
							| 36 | 20 | hhip |  |-  .ih = ( .iOLD ` <. <. +h , .h >. , normh >. ) | 
						
							| 37 | 36 22 23 5 | dipcn |  |-  ( <. <. +h , .h >. , normh >. e. NrmCVec -> .ih e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 38 | 35 37 | mp1i |  |-  ( ph -> .ih e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 39 | 31 32 34 38 | cnmpt12f |  |-  ( ph -> ( x e. ~H |-> ( x .ih B ) ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 40 | 28 39 | lmcn |  |-  ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) ) | 
						
							| 41 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. ( _|_ ` A ) ) | 
						
							| 42 |  | ocel |  |-  ( A C_ ~H -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) | 
						
							| 43 | 1 42 | syl |  |-  ( ph -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) | 
						
							| 45 | 41 44 | mpbid |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) | 
						
							| 46 | 45 | simpld |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. ~H ) | 
						
							| 47 |  | oveq1 |  |-  ( x = ( F ` k ) -> ( x .ih B ) = ( ( F ` k ) .ih B ) ) | 
						
							| 48 |  | eqid |  |-  ( x e. ~H |-> ( x .ih B ) ) = ( x e. ~H |-> ( x .ih B ) ) | 
						
							| 49 |  | ovex |  |-  ( ( F ` k ) .ih B ) e. _V | 
						
							| 50 | 47 48 49 | fvmpt |  |-  ( ( F ` k ) e. ~H -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = ( ( F ` k ) .ih B ) ) | 
						
							| 51 | 46 50 | syl |  |-  ( ( ph /\ k e. NN ) -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = ( ( F ` k ) .ih B ) ) | 
						
							| 52 |  | oveq2 |  |-  ( x = B -> ( ( F ` k ) .ih x ) = ( ( F ` k ) .ih B ) ) | 
						
							| 53 | 52 | eqeq1d |  |-  ( x = B -> ( ( ( F ` k ) .ih x ) = 0 <-> ( ( F ` k ) .ih B ) = 0 ) ) | 
						
							| 54 | 45 | simprd |  |-  ( ( ph /\ k e. NN ) -> A. x e. A ( ( F ` k ) .ih x ) = 0 ) | 
						
							| 55 | 4 | adantr |  |-  ( ( ph /\ k e. NN ) -> B e. A ) | 
						
							| 56 | 53 54 55 | rspcdva |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) .ih B ) = 0 ) | 
						
							| 57 | 51 56 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = 0 ) | 
						
							| 58 |  | ocss |  |-  ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) | 
						
							| 59 | 1 58 | syl |  |-  ( ph -> ( _|_ ` A ) C_ ~H ) | 
						
							| 60 | 3 59 | fssd |  |-  ( ph -> F : NN --> ~H ) | 
						
							| 61 |  | fvco3 |  |-  ( ( F : NN --> ~H /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) ) | 
						
							| 62 | 60 61 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) ) | 
						
							| 63 |  | c0ex |  |-  0 e. _V | 
						
							| 64 | 63 | fvconst2 |  |-  ( k e. NN -> ( ( NN X. { 0 } ) ` k ) = 0 ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( NN X. { 0 } ) ` k ) = 0 ) | 
						
							| 66 | 57 62 65 | 3eqtr4d |  |-  ( ( ph /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) | 
						
							| 67 | 66 | ralrimiva |  |-  ( ph -> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) | 
						
							| 68 |  | ovex |  |-  ( x .ih B ) e. _V | 
						
							| 69 | 68 48 | fnmpti |  |-  ( x e. ~H |-> ( x .ih B ) ) Fn ~H | 
						
							| 70 |  | fnfco |  |-  ( ( ( x e. ~H |-> ( x .ih B ) ) Fn ~H /\ F : NN --> ~H ) -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN ) | 
						
							| 71 | 69 60 70 | sylancr |  |-  ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN ) | 
						
							| 72 | 63 | fconst |  |-  ( NN X. { 0 } ) : NN --> { 0 } | 
						
							| 73 |  | ffn |  |-  ( ( NN X. { 0 } ) : NN --> { 0 } -> ( NN X. { 0 } ) Fn NN ) | 
						
							| 74 | 72 73 | ax-mp |  |-  ( NN X. { 0 } ) Fn NN | 
						
							| 75 |  | eqfnfv |  |-  ( ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN /\ ( NN X. { 0 } ) Fn NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) <-> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) ) | 
						
							| 76 | 71 74 75 | sylancl |  |-  ( ph -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) <-> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) ) | 
						
							| 77 | 67 76 | mpbird |  |-  ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) ) | 
						
							| 78 |  | fvex |  |-  ( ~~>v ` F ) e. _V | 
						
							| 79 | 78 | hlimveci |  |-  ( F ~~>v ( ~~>v ` F ) -> ( ~~>v ` F ) e. ~H ) | 
						
							| 80 |  | oveq1 |  |-  ( x = ( ~~>v ` F ) -> ( x .ih B ) = ( ( ~~>v ` F ) .ih B ) ) | 
						
							| 81 |  | ovex |  |-  ( ( ~~>v ` F ) .ih B ) e. _V | 
						
							| 82 | 80 48 81 | fvmpt |  |-  ( ( ~~>v ` F ) e. ~H -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) = ( ( ~~>v ` F ) .ih B ) ) | 
						
							| 83 | 19 79 82 | 3syl |  |-  ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) = ( ( ~~>v ` F ) .ih B ) ) | 
						
							| 84 | 40 77 83 | 3brtr3d |  |-  ( ph -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( ( ~~>v ` F ) .ih B ) ) | 
						
							| 85 | 5 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 86 | 85 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 87 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 88 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 89 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 90 | 89 | lmconst |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) | 
						
							| 91 | 86 87 88 90 | syl3anc |  |-  ( ph -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) | 
						
							| 92 | 7 84 91 | lmmo |  |-  ( ph -> ( ( ~~>v ` F ) .ih B ) = 0 ) |