Step |
Hyp |
Ref |
Expression |
1 |
|
occl.1 |
|- ( ph -> A C_ ~H ) |
2 |
|
occl.2 |
|- ( ph -> F e. Cauchy ) |
3 |
|
occl.3 |
|- ( ph -> F : NN --> ( _|_ ` A ) ) |
4 |
|
occl.4 |
|- ( ph -> B e. A ) |
5 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
6 |
5
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
7 |
6
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Haus ) |
8 |
|
ax-hcompl |
|- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |
9 |
|
hlimf |
|- ~~>v : dom ~~>v --> ~H |
10 |
|
ffn |
|- ( ~~>v : dom ~~>v --> ~H -> ~~>v Fn dom ~~>v ) |
11 |
9 10
|
ax-mp |
|- ~~>v Fn dom ~~>v |
12 |
|
fnbr |
|- ( ( ~~>v Fn dom ~~>v /\ F ~~>v x ) -> F e. dom ~~>v ) |
13 |
11 12
|
mpan |
|- ( F ~~>v x -> F e. dom ~~>v ) |
14 |
13
|
rexlimivw |
|- ( E. x e. ~H F ~~>v x -> F e. dom ~~>v ) |
15 |
2 8 14
|
3syl |
|- ( ph -> F e. dom ~~>v ) |
16 |
|
ffun |
|- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
17 |
|
funfvbrb |
|- ( Fun ~~>v -> ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) ) |
18 |
9 16 17
|
mp2b |
|- ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) |
19 |
15 18
|
sylib |
|- ( ph -> F ~~>v ( ~~>v ` F ) ) |
20 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
21 |
|
eqid |
|- ( normh o. -h ) = ( normh o. -h ) |
22 |
20 21
|
hhims |
|- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
23 |
|
eqid |
|- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
24 |
20 22 23
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
25 |
|
resss |
|- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
26 |
24 25
|
eqsstri |
|- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
27 |
26
|
ssbri |
|- ( F ~~>v ( ~~>v ` F ) -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` F ) ) |
28 |
19 27
|
syl |
|- ( ph -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` F ) ) |
29 |
21
|
hilxmet |
|- ( normh o. -h ) e. ( *Met ` ~H ) |
30 |
23
|
mopntopon |
|- ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) |
31 |
29 30
|
mp1i |
|- ( ph -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) |
32 |
31
|
cnmptid |
|- ( ph -> ( x e. ~H |-> x ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) |
33 |
1 4
|
sseldd |
|- ( ph -> B e. ~H ) |
34 |
31 31 33
|
cnmptc |
|- ( ph -> ( x e. ~H |-> B ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) |
35 |
20
|
hhnv |
|- <. <. +h , .h >. , normh >. e. NrmCVec |
36 |
20
|
hhip |
|- .ih = ( .iOLD ` <. <. +h , .h >. , normh >. ) |
37 |
36 22 23 5
|
dipcn |
|- ( <. <. +h , .h >. , normh >. e. NrmCVec -> .ih e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
38 |
35 37
|
mp1i |
|- ( ph -> .ih e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
39 |
31 32 34 38
|
cnmpt12f |
|- ( ph -> ( x e. ~H |-> ( x .ih B ) ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) ) |
40 |
28 39
|
lmcn |
|- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) ) |
41 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. ( _|_ ` A ) ) |
42 |
|
ocel |
|- ( A C_ ~H -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) |
43 |
1 42
|
syl |
|- ( ph -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) |
45 |
41 44
|
mpbid |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) |
46 |
45
|
simpld |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. ~H ) |
47 |
|
oveq1 |
|- ( x = ( F ` k ) -> ( x .ih B ) = ( ( F ` k ) .ih B ) ) |
48 |
|
eqid |
|- ( x e. ~H |-> ( x .ih B ) ) = ( x e. ~H |-> ( x .ih B ) ) |
49 |
|
ovex |
|- ( ( F ` k ) .ih B ) e. _V |
50 |
47 48 49
|
fvmpt |
|- ( ( F ` k ) e. ~H -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = ( ( F ` k ) .ih B ) ) |
51 |
46 50
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = ( ( F ` k ) .ih B ) ) |
52 |
|
oveq2 |
|- ( x = B -> ( ( F ` k ) .ih x ) = ( ( F ` k ) .ih B ) ) |
53 |
52
|
eqeq1d |
|- ( x = B -> ( ( ( F ` k ) .ih x ) = 0 <-> ( ( F ` k ) .ih B ) = 0 ) ) |
54 |
45
|
simprd |
|- ( ( ph /\ k e. NN ) -> A. x e. A ( ( F ` k ) .ih x ) = 0 ) |
55 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> B e. A ) |
56 |
53 54 55
|
rspcdva |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) .ih B ) = 0 ) |
57 |
51 56
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = 0 ) |
58 |
|
ocss |
|- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
59 |
1 58
|
syl |
|- ( ph -> ( _|_ ` A ) C_ ~H ) |
60 |
3 59
|
fssd |
|- ( ph -> F : NN --> ~H ) |
61 |
|
fvco3 |
|- ( ( F : NN --> ~H /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) ) |
62 |
60 61
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) ) |
63 |
|
c0ex |
|- 0 e. _V |
64 |
63
|
fvconst2 |
|- ( k e. NN -> ( ( NN X. { 0 } ) ` k ) = 0 ) |
65 |
64
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( NN X. { 0 } ) ` k ) = 0 ) |
66 |
57 62 65
|
3eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) |
67 |
66
|
ralrimiva |
|- ( ph -> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) |
68 |
|
ovex |
|- ( x .ih B ) e. _V |
69 |
68 48
|
fnmpti |
|- ( x e. ~H |-> ( x .ih B ) ) Fn ~H |
70 |
|
fnfco |
|- ( ( ( x e. ~H |-> ( x .ih B ) ) Fn ~H /\ F : NN --> ~H ) -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN ) |
71 |
69 60 70
|
sylancr |
|- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN ) |
72 |
63
|
fconst |
|- ( NN X. { 0 } ) : NN --> { 0 } |
73 |
|
ffn |
|- ( ( NN X. { 0 } ) : NN --> { 0 } -> ( NN X. { 0 } ) Fn NN ) |
74 |
72 73
|
ax-mp |
|- ( NN X. { 0 } ) Fn NN |
75 |
|
eqfnfv |
|- ( ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN /\ ( NN X. { 0 } ) Fn NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) <-> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) ) |
76 |
71 74 75
|
sylancl |
|- ( ph -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) <-> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) ) |
77 |
67 76
|
mpbird |
|- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) ) |
78 |
|
fvex |
|- ( ~~>v ` F ) e. _V |
79 |
78
|
hlimveci |
|- ( F ~~>v ( ~~>v ` F ) -> ( ~~>v ` F ) e. ~H ) |
80 |
|
oveq1 |
|- ( x = ( ~~>v ` F ) -> ( x .ih B ) = ( ( ~~>v ` F ) .ih B ) ) |
81 |
|
ovex |
|- ( ( ~~>v ` F ) .ih B ) e. _V |
82 |
80 48 81
|
fvmpt |
|- ( ( ~~>v ` F ) e. ~H -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) = ( ( ~~>v ` F ) .ih B ) ) |
83 |
19 79 82
|
3syl |
|- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) = ( ( ~~>v ` F ) .ih B ) ) |
84 |
40 77 83
|
3brtr3d |
|- ( ph -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( ( ~~>v ` F ) .ih B ) ) |
85 |
5
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
86 |
85
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
87 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
88 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
89 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
90 |
89
|
lmconst |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
91 |
86 87 88 90
|
syl3anc |
|- ( ph -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
92 |
7 84 91
|
lmmo |
|- ( ph -> ( ( ~~>v ` F ) .ih B ) = 0 ) |