Step |
Hyp |
Ref |
Expression |
1 |
|
ocss |
|- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
2 |
|
ocss |
|- ( B C_ ~H -> ( _|_ ` B ) C_ ~H ) |
3 |
1 2
|
anim12ci |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( ( _|_ ` B ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) ) |
4 |
|
occon |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
5 |
|
occon |
|- ( ( ( _|_ ` B ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
6 |
3 4 5
|
sylsyld |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |