| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ococss | 
							 |-  ( B C_ ~H -> B C_ ( _|_ ` ( _|_ ` B ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> B C_ ( _|_ ` ( _|_ ` B ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ocss | 
							 |-  ( B C_ ~H -> ( _|_ ` B ) C_ ~H )  | 
						
						
							| 4 | 
							
								
							 | 
							occon | 
							 |-  ( ( A C_ ~H /\ ( _|_ ` B ) C_ ~H ) -> ( A C_ ( _|_ ` B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylan2 | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sstr2 | 
							 |-  ( B C_ ( _|_ ` ( _|_ ` B ) ) -> ( ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) -> B C_ ( _|_ ` A ) ) )  | 
						
						
							| 7 | 
							
								2 5 6
							 | 
							sylsyld | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) -> B C_ ( _|_ ` A ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ococss | 
							 |-  ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> A C_ ( _|_ ` ( _|_ ` A ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							id | 
							 |-  ( B C_ ~H -> B C_ ~H )  | 
						
						
							| 11 | 
							
								
							 | 
							ocss | 
							 |-  ( A C_ ~H -> ( _|_ ` A ) C_ ~H )  | 
						
						
							| 12 | 
							
								
							 | 
							occon | 
							 |-  ( ( B C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( B C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) ) )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2anr | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( B C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							sstr2 | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` A ) ) -> ( ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) -> A C_ ( _|_ ` B ) ) )  | 
						
						
							| 15 | 
							
								9 13 14
							 | 
							sylsyld | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( B C_ ( _|_ ` A ) -> A C_ ( _|_ ` B ) ) )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							impbid | 
							 |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) )  |