Step |
Hyp |
Ref |
Expression |
1 |
|
shocel |
|- ( A e. SH -> ( x e. ( _|_ ` A ) <-> ( x e. ~H /\ A. y e. A ( x .ih y ) = 0 ) ) ) |
2 |
|
oveq2 |
|- ( y = x -> ( x .ih y ) = ( x .ih x ) ) |
3 |
2
|
eqeq1d |
|- ( y = x -> ( ( x .ih y ) = 0 <-> ( x .ih x ) = 0 ) ) |
4 |
3
|
rspccv |
|- ( A. y e. A ( x .ih y ) = 0 -> ( x e. A -> ( x .ih x ) = 0 ) ) |
5 |
|
his6 |
|- ( x e. ~H -> ( ( x .ih x ) = 0 <-> x = 0h ) ) |
6 |
5
|
biimpd |
|- ( x e. ~H -> ( ( x .ih x ) = 0 -> x = 0h ) ) |
7 |
4 6
|
sylan9r |
|- ( ( x e. ~H /\ A. y e. A ( x .ih y ) = 0 ) -> ( x e. A -> x = 0h ) ) |
8 |
1 7
|
syl6bi |
|- ( A e. SH -> ( x e. ( _|_ ` A ) -> ( x e. A -> x = 0h ) ) ) |
9 |
8
|
com23 |
|- ( A e. SH -> ( x e. A -> ( x e. ( _|_ ` A ) -> x = 0h ) ) ) |
10 |
9
|
impd |
|- ( A e. SH -> ( ( x e. A /\ x e. ( _|_ ` A ) ) -> x = 0h ) ) |
11 |
|
sh0 |
|- ( A e. SH -> 0h e. A ) |
12 |
|
oc0 |
|- ( A e. SH -> 0h e. ( _|_ ` A ) ) |
13 |
11 12
|
jca |
|- ( A e. SH -> ( 0h e. A /\ 0h e. ( _|_ ` A ) ) ) |
14 |
|
eleq1 |
|- ( x = 0h -> ( x e. A <-> 0h e. A ) ) |
15 |
|
eleq1 |
|- ( x = 0h -> ( x e. ( _|_ ` A ) <-> 0h e. ( _|_ ` A ) ) ) |
16 |
14 15
|
anbi12d |
|- ( x = 0h -> ( ( x e. A /\ x e. ( _|_ ` A ) ) <-> ( 0h e. A /\ 0h e. ( _|_ ` A ) ) ) ) |
17 |
13 16
|
syl5ibrcom |
|- ( A e. SH -> ( x = 0h -> ( x e. A /\ x e. ( _|_ ` A ) ) ) ) |
18 |
10 17
|
impbid |
|- ( A e. SH -> ( ( x e. A /\ x e. ( _|_ ` A ) ) <-> x = 0h ) ) |
19 |
|
elin |
|- ( x e. ( A i^i ( _|_ ` A ) ) <-> ( x e. A /\ x e. ( _|_ ` A ) ) ) |
20 |
|
elch0 |
|- ( x e. 0H <-> x = 0h ) |
21 |
18 19 20
|
3bitr4g |
|- ( A e. SH -> ( x e. ( A i^i ( _|_ ` A ) ) <-> x e. 0H ) ) |
22 |
21
|
eqrdv |
|- ( A e. SH -> ( A i^i ( _|_ ` A ) ) = 0H ) |