| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							shocel | 
							 |-  ( A e. SH -> ( x e. ( _|_ ` A ) <-> ( x e. ~H /\ A. y e. A ( x .ih y ) = 0 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = x -> ( x .ih y ) = ( x .ih x ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eqeq1d | 
							 |-  ( y = x -> ( ( x .ih y ) = 0 <-> ( x .ih x ) = 0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							rspccv | 
							 |-  ( A. y e. A ( x .ih y ) = 0 -> ( x e. A -> ( x .ih x ) = 0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							his6 | 
							 |-  ( x e. ~H -> ( ( x .ih x ) = 0 <-> x = 0h ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimpd | 
							 |-  ( x e. ~H -> ( ( x .ih x ) = 0 -> x = 0h ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							sylan9r | 
							 |-  ( ( x e. ~H /\ A. y e. A ( x .ih y ) = 0 ) -> ( x e. A -> x = 0h ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							biimtrdi | 
							 |-  ( A e. SH -> ( x e. ( _|_ ` A ) -> ( x e. A -> x = 0h ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							com23 | 
							 |-  ( A e. SH -> ( x e. A -> ( x e. ( _|_ ` A ) -> x = 0h ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							impd | 
							 |-  ( A e. SH -> ( ( x e. A /\ x e. ( _|_ ` A ) ) -> x = 0h ) )  | 
						
						
							| 11 | 
							
								
							 | 
							sh0 | 
							 |-  ( A e. SH -> 0h e. A )  | 
						
						
							| 12 | 
							
								
							 | 
							oc0 | 
							 |-  ( A e. SH -> 0h e. ( _|_ ` A ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							jca | 
							 |-  ( A e. SH -> ( 0h e. A /\ 0h e. ( _|_ ` A ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = 0h -> ( x e. A <-> 0h e. A ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = 0h -> ( x e. ( _|_ ` A ) <-> 0h e. ( _|_ ` A ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							anbi12d | 
							 |-  ( x = 0h -> ( ( x e. A /\ x e. ( _|_ ` A ) ) <-> ( 0h e. A /\ 0h e. ( _|_ ` A ) ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							syl5ibrcom | 
							 |-  ( A e. SH -> ( x = 0h -> ( x e. A /\ x e. ( _|_ ` A ) ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							impbid | 
							 |-  ( A e. SH -> ( ( x e. A /\ x e. ( _|_ ` A ) ) <-> x = 0h ) )  | 
						
						
							| 19 | 
							
								
							 | 
							elin | 
							 |-  ( x e. ( A i^i ( _|_ ` A ) ) <-> ( x e. A /\ x e. ( _|_ ` A ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							elch0 | 
							 |-  ( x e. 0H <-> x = 0h )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							3bitr4g | 
							 |-  ( A e. SH -> ( x e. ( A i^i ( _|_ ` A ) ) <-> x e. 0H ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqrdv | 
							 |-  ( A e. SH -> ( A i^i ( _|_ ` A ) ) = 0H )  |