Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( A e. ( H i^i ( _|_ ` H ) ) <-> ( A e. H /\ A e. ( _|_ ` H ) ) ) |
2 |
|
ocin |
|- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
3 |
2
|
eleq2d |
|- ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) <-> A e. 0H ) ) |
4 |
3
|
biimpd |
|- ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) -> A e. 0H ) ) |
5 |
1 4
|
syl5bir |
|- ( H e. SH -> ( ( A e. H /\ A e. ( _|_ ` H ) ) -> A e. 0H ) ) |
6 |
5
|
expcomd |
|- ( H e. SH -> ( A e. ( _|_ ` H ) -> ( A e. H -> A e. 0H ) ) ) |
7 |
6
|
imp |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A e. 0H ) ) |
8 |
|
elch0 |
|- ( A e. 0H <-> A = 0h ) |
9 |
7 8
|
syl6ib |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A = 0h ) ) |
10 |
9
|
necon3ad |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A =/= 0h -> -. A e. H ) ) |
11 |
10
|
3impia |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H ) |