| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elin | 
							 |-  ( A e. ( H i^i ( _|_ ` H ) ) <-> ( A e. H /\ A e. ( _|_ ` H ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ocin | 
							 |-  ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2d | 
							 |-  ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) <-> A e. 0H ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpd | 
							 |-  ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) -> A e. 0H ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							biimtrrid | 
							 |-  ( H e. SH -> ( ( A e. H /\ A e. ( _|_ ` H ) ) -> A e. 0H ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							expcomd | 
							 |-  ( H e. SH -> ( A e. ( _|_ ` H ) -> ( A e. H -> A e. 0H ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imp | 
							 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A e. 0H ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elch0 | 
							 |-  ( A e. 0H <-> A = 0h )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							imbitrdi | 
							 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A = 0h ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							necon3ad | 
							 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A =/= 0h -> -. A e. H ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3impia | 
							 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H )  |