Step |
Hyp |
Ref |
Expression |
1 |
|
ocel |
|- ( H C_ ~H -> ( B e. ( _|_ ` H ) <-> ( B e. ~H /\ A. x e. H ( B .ih x ) = 0 ) ) ) |
2 |
1
|
simplbda |
|- ( ( H C_ ~H /\ B e. ( _|_ ` H ) ) -> A. x e. H ( B .ih x ) = 0 ) |
3 |
2
|
adantl |
|- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> A. x e. H ( B .ih x ) = 0 ) |
4 |
|
oveq2 |
|- ( x = A -> ( B .ih x ) = ( B .ih A ) ) |
5 |
4
|
eqeq1d |
|- ( x = A -> ( ( B .ih x ) = 0 <-> ( B .ih A ) = 0 ) ) |
6 |
5
|
rspcv |
|- ( A e. H -> ( A. x e. H ( B .ih x ) = 0 -> ( B .ih A ) = 0 ) ) |
7 |
6
|
ad2antlr |
|- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( A. x e. H ( B .ih x ) = 0 -> ( B .ih A ) = 0 ) ) |
8 |
|
ssel2 |
|- ( ( H C_ ~H /\ A e. H ) -> A e. ~H ) |
9 |
|
ocss |
|- ( H C_ ~H -> ( _|_ ` H ) C_ ~H ) |
10 |
9
|
sselda |
|- ( ( H C_ ~H /\ B e. ( _|_ ` H ) ) -> B e. ~H ) |
11 |
|
orthcom |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
12 |
8 10 11
|
syl2an |
|- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
13 |
7 12
|
sylibrd |
|- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( A. x e. H ( B .ih x ) = 0 -> ( A .ih B ) = 0 ) ) |
14 |
3 13
|
mpd |
|- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) |
15 |
14
|
anandis |
|- ( ( H C_ ~H /\ ( A e. H /\ B e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) |
16 |
15
|
ex |
|- ( H C_ ~H -> ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A .ih B ) = 0 ) ) |