Metamath Proof Explorer


Theorem ocval

Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion ocval
|- ( H C_ ~H -> ( _|_ ` H ) = { x e. ~H | A. y e. H ( x .ih y ) = 0 } )

Proof

Step Hyp Ref Expression
1 ax-hilex
 |-  ~H e. _V
2 1 elpw2
 |-  ( H e. ~P ~H <-> H C_ ~H )
3 raleq
 |-  ( z = H -> ( A. y e. z ( x .ih y ) = 0 <-> A. y e. H ( x .ih y ) = 0 ) )
4 3 rabbidv
 |-  ( z = H -> { x e. ~H | A. y e. z ( x .ih y ) = 0 } = { x e. ~H | A. y e. H ( x .ih y ) = 0 } )
5 df-oc
 |-  _|_ = ( z e. ~P ~H |-> { x e. ~H | A. y e. z ( x .ih y ) = 0 } )
6 1 rabex
 |-  { x e. ~H | A. y e. H ( x .ih y ) = 0 } e. _V
7 4 5 6 fvmpt
 |-  ( H e. ~P ~H -> ( _|_ ` H ) = { x e. ~H | A. y e. H ( x .ih y ) = 0 } )
8 2 7 sylbir
 |-  ( H C_ ~H -> ( _|_ ` H ) = { x e. ~H | A. y e. H ( x .ih y ) = 0 } )