| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvfval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ocvfval.i |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | ocvfval.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | ocvfval.z |  |-  .0. = ( 0g ` F ) | 
						
							| 5 |  | ocvfval.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 6 | 1 2 3 4 5 | elocv |  |-  ( A e. ( ._|_ ` S ) <-> ( S C_ V /\ A e. V /\ A. x e. S ( A ., x ) = .0. ) ) | 
						
							| 7 | 6 | simp3bi |  |-  ( A e. ( ._|_ ` S ) -> A. x e. S ( A ., x ) = .0. ) | 
						
							| 8 |  | oveq2 |  |-  ( x = B -> ( A ., x ) = ( A ., B ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( x = B -> ( ( A ., x ) = .0. <-> ( A ., B ) = .0. ) ) | 
						
							| 10 | 9 | rspccva |  |-  ( ( A. x e. S ( A ., x ) = .0. /\ B e. S ) -> ( A ., B ) = .0. ) | 
						
							| 11 | 7 10 | sylan |  |-  ( ( A e. ( ._|_ ` S ) /\ B e. S ) -> ( A ., B ) = .0. ) |