Step |
Hyp |
Ref |
Expression |
1 |
|
ocvfval.v |
|- V = ( Base ` W ) |
2 |
|
ocvfval.i |
|- ., = ( .i ` W ) |
3 |
|
ocvfval.f |
|- F = ( Scalar ` W ) |
4 |
|
ocvfval.z |
|- .0. = ( 0g ` F ) |
5 |
|
ocvfval.o |
|- ._|_ = ( ocv ` W ) |
6 |
1 2 3 4 5
|
elocv |
|- ( A e. ( ._|_ ` S ) <-> ( S C_ V /\ A e. V /\ A. x e. S ( A ., x ) = .0. ) ) |
7 |
6
|
simp3bi |
|- ( A e. ( ._|_ ` S ) -> A. x e. S ( A ., x ) = .0. ) |
8 |
|
oveq2 |
|- ( x = B -> ( A ., x ) = ( A ., B ) ) |
9 |
8
|
eqeq1d |
|- ( x = B -> ( ( A ., x ) = .0. <-> ( A ., B ) = .0. ) ) |
10 |
9
|
rspccva |
|- ( ( A. x e. S ( A ., x ) = .0. /\ B e. S ) -> ( A ., B ) = .0. ) |
11 |
7 10
|
sylan |
|- ( ( A e. ( ._|_ ` S ) /\ B e. S ) -> ( A ., B ) = .0. ) |