Metamath Proof Explorer


Theorem ocvss

Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvss.v
|- V = ( Base ` W )
ocvss.o
|- ._|_ = ( ocv ` W )
Assertion ocvss
|- ( ._|_ ` S ) C_ V

Proof

Step Hyp Ref Expression
1 ocvss.v
 |-  V = ( Base ` W )
2 ocvss.o
 |-  ._|_ = ( ocv ` W )
3 eqid
 |-  ( .i ` W ) = ( .i ` W )
4 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
5 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
6 1 3 4 5 2 elocv
 |-  ( x e. ( ._|_ ` S ) <-> ( S C_ V /\ x e. V /\ A. y e. S ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) )
7 6 simp2bi
 |-  ( x e. ( ._|_ ` S ) -> x e. V )
8 7 ssriv
 |-  ( ._|_ ` S ) C_ V