Step |
Hyp |
Ref |
Expression |
1 |
|
ocvz.v |
|- V = ( Base ` W ) |
2 |
|
ocvz.o |
|- ._|_ = ( ocv ` W ) |
3 |
|
ocvz.z |
|- .0. = ( 0g ` W ) |
4 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
5 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
6 |
3 5
|
lsp0 |
|- ( W e. LMod -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
7 |
4 6
|
syl |
|- ( W e. PreHil -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
8 |
7
|
fveq2d |
|- ( W e. PreHil -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = ( ._|_ ` { .0. } ) ) |
9 |
|
0ss |
|- (/) C_ V |
10 |
1 2 5
|
ocvlsp |
|- ( ( W e. PreHil /\ (/) C_ V ) -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = ( ._|_ ` (/) ) ) |
11 |
9 10
|
mpan2 |
|- ( W e. PreHil -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = ( ._|_ ` (/) ) ) |
12 |
1 2
|
ocv0 |
|- ( ._|_ ` (/) ) = V |
13 |
11 12
|
eqtrdi |
|- ( W e. PreHil -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = V ) |
14 |
8 13
|
eqtr3d |
|- ( W e. PreHil -> ( ._|_ ` { .0. } ) = V ) |