| Step | Hyp | Ref | Expression | 
						
							| 1 |  | od1.1 |  |-  O = ( od ` G ) | 
						
							| 2 |  | od1.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 4 | 3 2 | grpidcl |  |-  ( G e. Grp -> .0. e. ( Base ` G ) ) | 
						
							| 5 |  | 1nn |  |-  1 e. NN | 
						
							| 6 | 5 | a1i |  |-  ( G e. Grp -> 1 e. NN ) | 
						
							| 7 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 8 | 3 7 | mulg1 |  |-  ( .0. e. ( Base ` G ) -> ( 1 ( .g ` G ) .0. ) = .0. ) | 
						
							| 9 | 4 8 | syl |  |-  ( G e. Grp -> ( 1 ( .g ` G ) .0. ) = .0. ) | 
						
							| 10 | 3 1 7 2 | odlem2 |  |-  ( ( .0. e. ( Base ` G ) /\ 1 e. NN /\ ( 1 ( .g ` G ) .0. ) = .0. ) -> ( O ` .0. ) e. ( 1 ... 1 ) ) | 
						
							| 11 | 4 6 9 10 | syl3anc |  |-  ( G e. Grp -> ( O ` .0. ) e. ( 1 ... 1 ) ) | 
						
							| 12 |  | elfz1eq |  |-  ( ( O ` .0. ) e. ( 1 ... 1 ) -> ( O ` .0. ) = 1 ) | 
						
							| 13 | 11 12 | syl |  |-  ( G e. Grp -> ( O ` .0. ) = 1 ) |