| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odadd1.1 |  |-  O = ( od ` G ) | 
						
							| 2 |  | odadd1.2 |  |-  X = ( Base ` G ) | 
						
							| 3 |  | odadd1.3 |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | simpl1 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Abel ) | 
						
							| 5 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Grp ) | 
						
							| 7 |  | simpl2 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> A e. X ) | 
						
							| 8 |  | simpl3 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> B e. X ) | 
						
							| 9 | 2 3 | grpcl |  |-  ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 10 | 6 7 8 9 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( A .+ B ) e. X ) | 
						
							| 11 | 2 1 | odcl |  |-  ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 13 | 2 1 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 14 | 7 13 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` A ) e. NN0 ) | 
						
							| 15 | 2 1 | odcl |  |-  ( B e. X -> ( O ` B ) e. NN0 ) | 
						
							| 16 | 8 15 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` B ) e. NN0 ) | 
						
							| 17 | 14 16 | nn0mulcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) | 
						
							| 18 |  | simpr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) gcd ( O ` B ) ) = 1 ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) | 
						
							| 20 | 12 | nn0cnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. CC ) | 
						
							| 21 | 20 | mulridd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. 1 ) = ( O ` ( A .+ B ) ) ) | 
						
							| 22 | 19 21 | eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` ( A .+ B ) ) ) | 
						
							| 23 | 1 2 3 | odadd1 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 25 | 22 24 | eqbrtrrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 26 | 1 2 3 | odadd2 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) | 
						
							| 28 | 18 | oveq1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 29 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 30 | 28 29 | eqtrdi |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = 1 ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) | 
						
							| 32 | 31 21 | eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( O ` ( A .+ B ) ) ) | 
						
							| 33 | 27 32 | breqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) | 
						
							| 34 |  | dvdseq |  |-  ( ( ( ( O ` ( A .+ B ) ) e. NN0 /\ ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) /\ ( ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) /\ ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 35 | 12 17 25 33 34 | syl22anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |