Step |
Hyp |
Ref |
Expression |
1 |
|
odadd1.1 |
|- O = ( od ` G ) |
2 |
|
odadd1.2 |
|- X = ( Base ` G ) |
3 |
|
odadd1.3 |
|- .+ = ( +g ` G ) |
4 |
|
simpl1 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Abel ) |
5 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
6 |
4 5
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Grp ) |
7 |
|
simpl2 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> A e. X ) |
8 |
|
simpl3 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> B e. X ) |
9 |
2 3
|
grpcl |
|- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( A .+ B ) e. X ) |
11 |
2 1
|
odcl |
|- ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) |
12 |
10 11
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. NN0 ) |
13 |
2 1
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
14 |
7 13
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` A ) e. NN0 ) |
15 |
2 1
|
odcl |
|- ( B e. X -> ( O ` B ) e. NN0 ) |
16 |
8 15
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` B ) e. NN0 ) |
17 |
14 16
|
nn0mulcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) |
18 |
|
simpr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) gcd ( O ` B ) ) = 1 ) |
19 |
18
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) |
20 |
12
|
nn0cnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. CC ) |
21 |
20
|
mulid1d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. 1 ) = ( O ` ( A .+ B ) ) ) |
22 |
19 21
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` ( A .+ B ) ) ) |
23 |
1 2 3
|
odadd1 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
24 |
23
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
25 |
22 24
|
eqbrtrrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
26 |
1 2 3
|
odadd2 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
27 |
26
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
28 |
18
|
oveq1d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
29 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
30 |
28 29
|
eqtrdi |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = 1 ) |
31 |
30
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) |
32 |
31 21
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( O ` ( A .+ B ) ) ) |
33 |
27 32
|
breqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) |
34 |
|
dvdseq |
|- ( ( ( ( O ` ( A .+ B ) ) e. NN0 /\ ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) /\ ( ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) /\ ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
35 |
12 17 25 33 34
|
syl22anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |