| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odadd1.1 |  |-  O = ( od ` G ) | 
						
							| 2 |  | odadd1.2 |  |-  X = ( Base ` G ) | 
						
							| 3 |  | odadd1.3 |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 5 | 2 3 | grpcl |  |-  ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 6 | 4 5 | syl3an1 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 7 | 2 1 | odcl |  |-  ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 9 | 8 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. ZZ ) | 
						
							| 10 | 2 1 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. NN0 ) | 
						
							| 12 | 11 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. ZZ ) | 
						
							| 13 | 2 1 | odcl |  |-  ( B e. X -> ( O ` B ) e. NN0 ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. NN0 ) | 
						
							| 15 | 14 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. ZZ ) | 
						
							| 16 | 12 15 | gcdcld |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) gcd ( O ` B ) ) e. NN0 ) | 
						
							| 17 | 16 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) gcd ( O ` B ) ) e. ZZ ) | 
						
							| 18 | 9 17 | zmulcld |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 20 |  | dvds0 |  |-  ( ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || 0 ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || 0 ) | 
						
							| 22 |  | gcdeq0 |  |-  ( ( ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) = 0 <-> ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) ) ) | 
						
							| 23 | 12 15 22 | syl2anc |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( ( O ` A ) gcd ( O ` B ) ) = 0 <-> ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) ) | 
						
							| 25 |  | oveq12 |  |-  ( ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = ( 0 x. 0 ) ) | 
						
							| 26 |  | 0cn |  |-  0 e. CC | 
						
							| 27 | 26 | mul01i |  |-  ( 0 x. 0 ) = 0 | 
						
							| 28 | 25 27 | eqtrdi |  |-  ( ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = 0 ) | 
						
							| 29 | 24 28 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = 0 ) | 
						
							| 30 | 21 29 | breqtrrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 31 |  | simpl1 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Abel ) | 
						
							| 32 | 17 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. ZZ ) | 
						
							| 33 | 12 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. ZZ ) | 
						
							| 34 | 15 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. ZZ ) | 
						
							| 35 |  | gcddvds |  |-  ( ( ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) | 
						
							| 36 | 33 34 35 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) | 
						
							| 37 | 36 | simpld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) ) | 
						
							| 38 | 32 33 34 37 | dvdsmultr1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 39 |  | simpr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) | 
						
							| 40 | 33 34 | zmulcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) | 
						
							| 41 |  | dvdsval2 |  |-  ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( ( O ` A ) x. ( O ` B ) ) <-> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 42 | 32 39 40 41 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( ( O ` A ) x. ( O ` B ) ) <-> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 43 | 38 42 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 44 |  | simpl2 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> A e. X ) | 
						
							| 45 |  | simpl3 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> B e. X ) | 
						
							| 46 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 47 | 2 46 3 | mulgdi |  |-  ( ( G e. Abel /\ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ A e. X /\ B e. X ) ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) .+ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) ) ) | 
						
							| 48 | 31 43 44 45 47 | syl13anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) .+ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) ) ) | 
						
							| 49 | 36 | simprd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) | 
						
							| 50 |  | dvdsval2 |  |-  ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 51 | 32 39 34 50 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 52 | 49 51 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 53 |  | dvdsmul1 |  |-  ( ( ( O ` A ) e. ZZ /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 54 | 33 52 53 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` A ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 55 | 33 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. CC ) | 
						
							| 56 | 34 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. CC ) | 
						
							| 57 | 32 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. CC ) | 
						
							| 58 | 55 56 57 39 | divassd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` A ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 59 | 54 58 | breqtrrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 60 | 31 4 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Grp ) | 
						
							| 61 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 62 | 2 1 46 61 | oddvds |  |-  ( ( G e. Grp /\ A e. X /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( ( O ` A ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) | 
						
							| 63 | 60 44 43 62 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) | 
						
							| 64 | 59 63 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) = ( 0g ` G ) ) | 
						
							| 65 |  | dvdsval2 |  |-  ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` A ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 66 | 32 39 33 65 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 67 | 37 66 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 68 |  | dvdsmul1 |  |-  ( ( ( O ` B ) e. ZZ /\ ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( O ` B ) || ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 69 | 34 67 68 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 70 | 55 56 | mulcomd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = ( ( O ` B ) x. ( O ` A ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( ( O ` B ) x. ( O ` A ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 72 | 56 55 57 39 | divassd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) x. ( O ` A ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 73 | 71 72 | eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 74 | 69 73 | breqtrrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 75 | 2 1 46 61 | oddvds |  |-  ( ( G e. Grp /\ B e. X /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( ( O ` B ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) | 
						
							| 76 | 60 45 43 75 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) | 
						
							| 77 | 74 76 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) = ( 0g ` G ) ) | 
						
							| 78 | 64 77 | oveq12d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) .+ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) ) = ( ( 0g ` G ) .+ ( 0g ` G ) ) ) | 
						
							| 79 | 2 61 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 80 | 2 3 61 | grplid |  |-  ( ( G e. Grp /\ ( 0g ` G ) e. X ) -> ( ( 0g ` G ) .+ ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 81 | 60 79 80 | syl2anc2 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( 0g ` G ) .+ ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 82 | 48 78 81 | 3eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) | 
						
							| 83 | 6 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( A .+ B ) e. X ) | 
						
							| 84 | 2 1 46 61 | oddvds |  |-  ( ( G e. Grp /\ ( A .+ B ) e. X /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) | 
						
							| 85 | 60 83 43 84 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) | 
						
							| 86 | 82 85 | mpbird |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 87 | 9 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) e. ZZ ) | 
						
							| 88 |  | dvdsmulcr |  |-  ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) ) -> ( ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 89 | 87 43 32 39 88 | syl112anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 90 | 86 89 | mpbird |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 91 | 40 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) e. CC ) | 
						
							| 92 | 91 57 39 | divcan1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 93 | 90 92 | breqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 94 | 30 93 | pm2.61dane |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |