| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odadd1.1 |  |-  O = ( od ` G ) | 
						
							| 2 |  | odadd1.2 |  |-  X = ( Base ` G ) | 
						
							| 3 |  | odadd1.3 |  |-  .+ = ( +g ` G ) | 
						
							| 4 | 2 1 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. NN0 ) | 
						
							| 6 | 5 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. ZZ ) | 
						
							| 7 | 2 1 | odcl |  |-  ( B e. X -> ( O ` B ) e. NN0 ) | 
						
							| 8 | 7 | 3ad2ant3 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. NN0 ) | 
						
							| 9 | 8 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. ZZ ) | 
						
							| 10 | 6 9 | zmulcld |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) | 
						
							| 12 |  | dvds0 |  |-  ( ( ( O ` A ) x. ( O ` B ) ) e. ZZ -> ( ( O ` A ) x. ( O ` B ) ) || 0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) || 0 ) | 
						
							| 14 |  | simpr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) = 0 ) | 
						
							| 15 | 14 | sq0id |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = 0 ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` ( A .+ B ) ) x. 0 ) ) | 
						
							| 17 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 18 | 2 3 | grpcl |  |-  ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 19 | 17 18 | syl3an1 |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 20 | 2 1 | odcl |  |-  ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 22 | 21 | nn0zd |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. ZZ ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( O ` ( A .+ B ) ) e. ZZ ) | 
						
							| 24 | 23 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( O ` ( A .+ B ) ) e. CC ) | 
						
							| 25 | 24 | mul01d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. 0 ) = 0 ) | 
						
							| 26 | 16 25 | eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = 0 ) | 
						
							| 27 | 13 26 | breqtrrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) | 
						
							| 28 | 6 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. ZZ ) | 
						
							| 29 | 9 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. ZZ ) | 
						
							| 30 | 28 29 | gcdcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. NN0 ) | 
						
							| 31 | 30 | nn0cnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. CC ) | 
						
							| 32 | 31 | sqvald |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = ( ( ( O ` A ) gcd ( O ` B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 34 |  | gcddvds |  |-  ( ( ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) | 
						
							| 35 | 28 29 34 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) | 
						
							| 36 | 35 | simpld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) ) | 
						
							| 37 | 30 | nn0zd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. ZZ ) | 
						
							| 38 |  | simpr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) | 
						
							| 39 |  | dvdsval2 |  |-  ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` A ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 40 | 37 38 28 39 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 41 | 36 40 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 42 | 41 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. CC ) | 
						
							| 43 | 35 | simprd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) | 
						
							| 44 |  | dvdsval2 |  |-  ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 45 | 37 38 29 44 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) | 
						
							| 46 | 43 45 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) | 
						
							| 47 | 46 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. CC ) | 
						
							| 48 | 42 31 47 31 | mul4d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) ) | 
						
							| 49 | 28 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. CC ) | 
						
							| 50 | 49 31 38 | divcan1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` A ) ) | 
						
							| 51 | 29 | zcnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. CC ) | 
						
							| 52 | 51 31 38 | divcan1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` B ) ) | 
						
							| 53 | 50 52 | oveq12d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 54 | 33 48 53 | 3eqtr2d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` A ) x. ( O ` B ) ) ) | 
						
							| 55 | 22 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) e. ZZ ) | 
						
							| 56 |  | dvdsmul2 |  |-  ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` A ) e. ZZ ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) | 
						
							| 57 | 55 28 56 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) | 
						
							| 58 |  | simpl1 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Abel ) | 
						
							| 59 | 55 29 | zmulcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) | 
						
							| 60 |  | simpl2 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> A e. X ) | 
						
							| 61 |  | simpl3 |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> B e. X ) | 
						
							| 62 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 63 | 2 62 3 | mulgdi |  |-  ( ( G e. Abel /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ /\ A e. X /\ B e. X ) ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) ) ) | 
						
							| 64 | 58 59 60 61 63 | syl13anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) ) ) | 
						
							| 65 |  | dvdsmul2 |  |-  ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) | 
						
							| 66 | 55 29 65 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) | 
						
							| 67 | 58 17 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Grp ) | 
						
							| 68 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 69 | 2 1 62 68 | oddvds |  |-  ( ( G e. Grp /\ B e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) | 
						
							| 70 | 67 61 59 69 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) | 
						
							| 71 | 66 70 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) = ( 0g ` G ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) ) | 
						
							| 73 | 64 72 | eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) ) | 
						
							| 74 |  | dvdsmul1 |  |-  ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) | 
						
							| 75 | 55 29 74 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) | 
						
							| 76 | 19 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( A .+ B ) e. X ) | 
						
							| 77 | 2 1 62 68 | oddvds |  |-  ( ( G e. Grp /\ ( A .+ B ) e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) | 
						
							| 78 | 67 76 59 77 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) | 
						
							| 79 | 75 78 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) | 
						
							| 80 | 2 62 | mulgcl |  |-  ( ( G e. Grp /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ /\ A e. X ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) e. X ) | 
						
							| 81 | 67 59 60 80 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) e. X ) | 
						
							| 82 | 2 3 68 | grprid |  |-  ( ( G e. Grp /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) e. X ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) ) | 
						
							| 83 | 67 81 82 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) ) | 
						
							| 84 | 73 79 83 | 3eqtr3rd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) = ( 0g ` G ) ) | 
						
							| 85 | 2 1 62 68 | oddvds |  |-  ( ( G e. Grp /\ A e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) | 
						
							| 86 | 67 60 59 85 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) | 
						
							| 87 | 84 86 | mpbird |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) | 
						
							| 88 | 55 28 | zmulcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) | 
						
							| 89 |  | dvdsgcd |  |-  ( ( ( O ` A ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` A ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) | 
						
							| 90 | 28 88 59 89 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` A ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) | 
						
							| 91 | 57 87 90 | mp2and |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) | 
						
							| 92 | 21 | adantr |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) e. NN0 ) | 
						
							| 93 |  | mulgcd |  |-  ( ( ( O ` ( A .+ B ) ) e. NN0 /\ ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 94 | 92 28 29 93 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 95 | 91 94 | breqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 96 | 50 95 | eqbrtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 97 |  | dvdsmulcr |  |-  ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) | 
						
							| 98 | 41 55 37 38 97 | syl112anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) | 
						
							| 99 | 96 98 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) | 
						
							| 100 | 2 62 3 | mulgdi |  |-  ( ( G e. Abel /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ A e. X /\ B e. X ) ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) | 
						
							| 101 | 58 88 60 61 100 | syl13anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) | 
						
							| 102 | 2 1 62 68 | oddvds |  |-  ( ( G e. Grp /\ A e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) | 
						
							| 103 | 67 60 88 102 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) | 
						
							| 104 | 57 103 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) = ( 0g ` G ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) = ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) | 
						
							| 106 | 101 105 | eqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) | 
						
							| 107 |  | dvdsmul1 |  |-  ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` A ) e. ZZ ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) | 
						
							| 108 | 55 28 107 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) | 
						
							| 109 | 2 1 62 68 | oddvds |  |-  ( ( G e. Grp /\ ( A .+ B ) e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) | 
						
							| 110 | 67 76 88 109 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) | 
						
							| 111 | 108 110 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) | 
						
							| 112 | 2 62 | mulgcl |  |-  ( ( G e. Grp /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ B e. X ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) e. X ) | 
						
							| 113 | 67 88 61 112 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) e. X ) | 
						
							| 114 | 2 3 68 | grplid |  |-  ( ( G e. Grp /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) e. X ) -> ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) | 
						
							| 115 | 67 113 114 | syl2anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) | 
						
							| 116 | 106 111 115 | 3eqtr3rd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) = ( 0g ` G ) ) | 
						
							| 117 | 2 1 62 68 | oddvds |  |-  ( ( G e. Grp /\ B e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) | 
						
							| 118 | 67 61 88 117 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) | 
						
							| 119 | 116 118 | mpbird |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) | 
						
							| 120 |  | dvdsgcd |  |-  ( ( ( O ` B ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` B ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) | 
						
							| 121 | 29 88 59 120 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` B ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) | 
						
							| 122 | 119 66 121 | mp2and |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) | 
						
							| 123 | 122 94 | breqtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 124 | 52 123 | eqbrtrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 125 |  | dvdsmulcr |  |-  ( ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) ) -> ( ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) | 
						
							| 126 | 46 55 37 38 125 | syl112anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) | 
						
							| 127 | 124 126 | mpbid |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) | 
						
							| 128 | 41 46 | gcdcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. NN0 ) | 
						
							| 129 | 128 | nn0cnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. CC ) | 
						
							| 130 |  | 1cnd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> 1 e. CC ) | 
						
							| 131 | 31 | mullidd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( 1 x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` A ) gcd ( O ` B ) ) ) | 
						
							| 132 | 50 52 | oveq12d |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( O ` A ) gcd ( O ` B ) ) ) | 
						
							| 133 |  | mulgcdr |  |-  ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) e. NN0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 134 | 41 46 30 133 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 135 | 131 132 134 | 3eqtr2rd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( 1 x. ( ( O ` A ) gcd ( O ` B ) ) ) ) | 
						
							| 136 | 129 130 31 38 135 | mulcan2ad |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) = 1 ) | 
						
							| 137 |  | coprmdvds2 |  |-  ( ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ ) /\ ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) = 1 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) ) ) | 
						
							| 138 | 41 46 55 136 137 | syl31anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) ) ) | 
						
							| 139 | 99 127 138 | mp2and |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) ) | 
						
							| 140 | 41 46 | zmulcld |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. ZZ ) | 
						
							| 141 |  | zsqcl |  |-  ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) e. ZZ ) | 
						
							| 142 | 37 141 | syl |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) e. ZZ ) | 
						
							| 143 |  | dvdsmulc |  |-  ( ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) e. ZZ ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) ) | 
						
							| 144 | 140 55 142 143 | syl3anc |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) ) | 
						
							| 145 | 139 144 | mpd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) | 
						
							| 146 | 54 145 | eqbrtrrd |  |-  ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) | 
						
							| 147 | 27 146 | pm2.61dane |  |-  ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |