Step |
Hyp |
Ref |
Expression |
1 |
|
odmulgid.1 |
|- X = ( Base ` G ) |
2 |
|
odmulgid.2 |
|- O = ( od ` G ) |
3 |
|
odmulgid.3 |
|- .x. = ( .g ` G ) |
4 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> N e. ZZ ) |
5 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> A e. X ) |
6 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
7 |
5 6
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> ( O ` A ) e. NN0 ) |
8 |
7
|
nn0zd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> ( O ` A ) e. ZZ ) |
9 |
|
bezout |
|- ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) ) |
10 |
4 8 9
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> E. x e. ZZ E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) ) |
11 |
|
oveq1 |
|- ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) = ( N gcd ( O ` A ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( N gcd ( O ` A ) ) .x. A ) ) |
12 |
11
|
eqcoms |
|- ( ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( N gcd ( O ` A ) ) .x. A ) ) |
13 |
|
simpll1 |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> G e. Grp ) |
14 |
4
|
adantr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. ZZ ) |
15 |
|
simprl |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
16 |
14 15
|
zmulcld |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N x. x ) e. ZZ ) |
17 |
5
|
adantr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. X ) |
18 |
17 6
|
syl |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) e. NN0 ) |
19 |
18
|
nn0zd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) e. ZZ ) |
20 |
|
simprr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
21 |
19 20
|
zmulcld |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) x. y ) e. ZZ ) |
22 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
23 |
1 3 22
|
mulgdir |
|- ( ( G e. Grp /\ ( ( N x. x ) e. ZZ /\ ( ( O ` A ) x. y ) e. ZZ /\ A e. X ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) ) |
24 |
13 16 21 17 23
|
syl13anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) ) |
25 |
14
|
zcnd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. CC ) |
26 |
15
|
zcnd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) |
27 |
25 26
|
mulcomd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N x. x ) = ( x x. N ) ) |
28 |
27
|
oveq1d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. x ) .x. A ) = ( ( x x. N ) .x. A ) ) |
29 |
1 3
|
mulgass |
|- ( ( G e. Grp /\ ( x e. ZZ /\ N e. ZZ /\ A e. X ) ) -> ( ( x x. N ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
30 |
13 15 14 17 29
|
syl13anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. N ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
31 |
28 30
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. x ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
32 |
|
dvdsmul1 |
|- ( ( ( O ` A ) e. ZZ /\ y e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. y ) ) |
33 |
19 20 32
|
syl2anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) || ( ( O ` A ) x. y ) ) |
34 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
35 |
1 2 3 34
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ ( ( O ` A ) x. y ) e. ZZ ) -> ( ( O ` A ) || ( ( O ` A ) x. y ) <-> ( ( ( O ` A ) x. y ) .x. A ) = ( 0g ` G ) ) ) |
36 |
13 17 21 35
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( ( O ` A ) x. y ) <-> ( ( ( O ` A ) x. y ) .x. A ) = ( 0g ` G ) ) ) |
37 |
33 36
|
mpbid |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( O ` A ) x. y ) .x. A ) = ( 0g ` G ) ) |
38 |
31 37
|
oveq12d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) = ( ( x .x. ( N .x. A ) ) ( +g ` G ) ( 0g ` G ) ) ) |
39 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
40 |
13 14 17 39
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N .x. A ) e. X ) |
41 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ x e. ZZ /\ ( N .x. A ) e. X ) -> ( x .x. ( N .x. A ) ) e. X ) |
42 |
13 15 40 41
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x .x. ( N .x. A ) ) e. X ) |
43 |
1 22 34
|
grprid |
|- ( ( G e. Grp /\ ( x .x. ( N .x. A ) ) e. X ) -> ( ( x .x. ( N .x. A ) ) ( +g ` G ) ( 0g ` G ) ) = ( x .x. ( N .x. A ) ) ) |
44 |
13 42 43
|
syl2anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. ( N .x. A ) ) ( +g ` G ) ( 0g ` G ) ) = ( x .x. ( N .x. A ) ) ) |
45 |
38 44
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) = ( x .x. ( N .x. A ) ) ) |
46 |
24 45
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
47 |
|
simplr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) = 1 ) |
48 |
47
|
oveq1d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) .x. A ) = ( 1 .x. A ) ) |
49 |
1 3
|
mulg1 |
|- ( A e. X -> ( 1 .x. A ) = A ) |
50 |
17 49
|
syl |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( 1 .x. A ) = A ) |
51 |
48 50
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) .x. A ) = A ) |
52 |
46 51
|
eqeq12d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( N gcd ( O ` A ) ) .x. A ) <-> ( x .x. ( N .x. A ) ) = A ) ) |
53 |
12 52
|
syl5ib |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( x .x. ( N .x. A ) ) = A ) ) |
54 |
53
|
anassrs |
|- ( ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( x .x. ( N .x. A ) ) = A ) ) |
55 |
54
|
rexlimdva |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ x e. ZZ ) -> ( E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( x .x. ( N .x. A ) ) = A ) ) |
56 |
55
|
reximdva |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> ( E. x e. ZZ E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> E. x e. ZZ ( x .x. ( N .x. A ) ) = A ) ) |
57 |
10 56
|
mpd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> E. x e. ZZ ( x .x. ( N .x. A ) ) = A ) |