| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odmulgid.1 |
|- X = ( Base ` G ) |
| 2 |
|
odmulgid.2 |
|- O = ( od ` G ) |
| 3 |
|
odmulgid.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> N e. ZZ ) |
| 5 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> A e. X ) |
| 6 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
| 7 |
5 6
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> ( O ` A ) e. NN0 ) |
| 8 |
7
|
nn0zd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> ( O ` A ) e. ZZ ) |
| 9 |
|
bezout |
|- ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) ) |
| 10 |
4 8 9
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> E. x e. ZZ E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) ) |
| 11 |
|
oveq1 |
|- ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) = ( N gcd ( O ` A ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( N gcd ( O ` A ) ) .x. A ) ) |
| 12 |
11
|
eqcoms |
|- ( ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( N gcd ( O ` A ) ) .x. A ) ) |
| 13 |
|
simpll1 |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> G e. Grp ) |
| 14 |
4
|
adantr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. ZZ ) |
| 15 |
|
simprl |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
| 16 |
14 15
|
zmulcld |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N x. x ) e. ZZ ) |
| 17 |
5
|
adantr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. X ) |
| 18 |
17 6
|
syl |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) e. NN0 ) |
| 19 |
18
|
nn0zd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) e. ZZ ) |
| 20 |
|
simprr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
| 21 |
19 20
|
zmulcld |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) x. y ) e. ZZ ) |
| 22 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 23 |
1 3 22
|
mulgdir |
|- ( ( G e. Grp /\ ( ( N x. x ) e. ZZ /\ ( ( O ` A ) x. y ) e. ZZ /\ A e. X ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) ) |
| 24 |
13 16 21 17 23
|
syl13anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) ) |
| 25 |
14
|
zcnd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. CC ) |
| 26 |
15
|
zcnd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) |
| 27 |
25 26
|
mulcomd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N x. x ) = ( x x. N ) ) |
| 28 |
27
|
oveq1d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. x ) .x. A ) = ( ( x x. N ) .x. A ) ) |
| 29 |
1 3
|
mulgass |
|- ( ( G e. Grp /\ ( x e. ZZ /\ N e. ZZ /\ A e. X ) ) -> ( ( x x. N ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
| 30 |
13 15 14 17 29
|
syl13anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. N ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
| 31 |
28 30
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. x ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
| 32 |
|
dvdsmul1 |
|- ( ( ( O ` A ) e. ZZ /\ y e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. y ) ) |
| 33 |
19 20 32
|
syl2anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) || ( ( O ` A ) x. y ) ) |
| 34 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 35 |
1 2 3 34
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ ( ( O ` A ) x. y ) e. ZZ ) -> ( ( O ` A ) || ( ( O ` A ) x. y ) <-> ( ( ( O ` A ) x. y ) .x. A ) = ( 0g ` G ) ) ) |
| 36 |
13 17 21 35
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( ( O ` A ) x. y ) <-> ( ( ( O ` A ) x. y ) .x. A ) = ( 0g ` G ) ) ) |
| 37 |
33 36
|
mpbid |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( O ` A ) x. y ) .x. A ) = ( 0g ` G ) ) |
| 38 |
31 37
|
oveq12d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) = ( ( x .x. ( N .x. A ) ) ( +g ` G ) ( 0g ` G ) ) ) |
| 39 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 40 |
13 14 17 39
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N .x. A ) e. X ) |
| 41 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ x e. ZZ /\ ( N .x. A ) e. X ) -> ( x .x. ( N .x. A ) ) e. X ) |
| 42 |
13 15 40 41
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x .x. ( N .x. A ) ) e. X ) |
| 43 |
1 22 34
|
grprid |
|- ( ( G e. Grp /\ ( x .x. ( N .x. A ) ) e. X ) -> ( ( x .x. ( N .x. A ) ) ( +g ` G ) ( 0g ` G ) ) = ( x .x. ( N .x. A ) ) ) |
| 44 |
13 42 43
|
syl2anc |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. ( N .x. A ) ) ( +g ` G ) ( 0g ` G ) ) = ( x .x. ( N .x. A ) ) ) |
| 45 |
38 44
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) .x. A ) ( +g ` G ) ( ( ( O ` A ) x. y ) .x. A ) ) = ( x .x. ( N .x. A ) ) ) |
| 46 |
24 45
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( x .x. ( N .x. A ) ) ) |
| 47 |
|
simplr |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) = 1 ) |
| 48 |
47
|
oveq1d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) .x. A ) = ( 1 .x. A ) ) |
| 49 |
1 3
|
mulg1 |
|- ( A e. X -> ( 1 .x. A ) = A ) |
| 50 |
17 49
|
syl |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( 1 .x. A ) = A ) |
| 51 |
48 50
|
eqtrd |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) .x. A ) = A ) |
| 52 |
46 51
|
eqeq12d |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ( N x. x ) + ( ( O ` A ) x. y ) ) .x. A ) = ( ( N gcd ( O ` A ) ) .x. A ) <-> ( x .x. ( N .x. A ) ) = A ) ) |
| 53 |
12 52
|
imbitrid |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( x .x. ( N .x. A ) ) = A ) ) |
| 54 |
53
|
anassrs |
|- ( ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ x e. ZZ ) /\ y e. ZZ ) -> ( ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( x .x. ( N .x. A ) ) = A ) ) |
| 55 |
54
|
rexlimdva |
|- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) /\ x e. ZZ ) -> ( E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> ( x .x. ( N .x. A ) ) = A ) ) |
| 56 |
55
|
reximdva |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> ( E. x e. ZZ E. y e. ZZ ( N gcd ( O ` A ) ) = ( ( N x. x ) + ( ( O ` A ) x. y ) ) -> E. x e. ZZ ( x .x. ( N .x. A ) ) = A ) ) |
| 57 |
10 56
|
mpd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 1 ) -> E. x e. ZZ ( x .x. ( N .x. A ) ) = A ) |