Step |
Hyp |
Ref |
Expression |
1 |
|
odcau.x |
|- X = ( Base ` G ) |
2 |
|
odcau.o |
|- O = ( od ` G ) |
3 |
|
simpl1 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> G e. Grp ) |
4 |
|
simpl2 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> X e. Fin ) |
5 |
|
simpl3 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P e. Prime ) |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
6
|
a1i |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> 1 e. NN0 ) |
8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
9 |
5 8
|
syl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P e. NN ) |
10 |
9
|
nncnd |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P e. CC ) |
11 |
10
|
exp1d |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( P ^ 1 ) = P ) |
12 |
|
simpr |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P || ( # ` X ) ) |
13 |
11 12
|
eqbrtrd |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( P ^ 1 ) || ( # ` X ) ) |
14 |
1 3 4 5 7 13
|
sylow1 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> E. s e. ( SubGrp ` G ) ( # ` s ) = ( P ^ 1 ) ) |
15 |
11
|
eqeq2d |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( ( # ` s ) = ( P ^ 1 ) <-> ( # ` s ) = P ) ) |
16 |
15
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ s e. ( SubGrp ` G ) ) -> ( ( # ` s ) = ( P ^ 1 ) <-> ( # ` s ) = P ) ) |
17 |
|
fvex |
|- ( 0g ` G ) e. _V |
18 |
|
hashsng |
|- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
19 |
17 18
|
ax-mp |
|- ( # ` { ( 0g ` G ) } ) = 1 |
20 |
|
simprr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( # ` s ) = P ) |
21 |
5
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> P e. Prime ) |
22 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
23 |
21 22
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> P e. ( ZZ>= ` 2 ) ) |
24 |
20 23
|
eqeltrd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( # ` s ) e. ( ZZ>= ` 2 ) ) |
25 |
|
eluz2gt1 |
|- ( ( # ` s ) e. ( ZZ>= ` 2 ) -> 1 < ( # ` s ) ) |
26 |
24 25
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> 1 < ( # ` s ) ) |
27 |
19 26
|
eqbrtrid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( # ` { ( 0g ` G ) } ) < ( # ` s ) ) |
28 |
|
snfi |
|- { ( 0g ` G ) } e. Fin |
29 |
4
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> X e. Fin ) |
30 |
1
|
subgss |
|- ( s e. ( SubGrp ` G ) -> s C_ X ) |
31 |
30
|
ad2antrl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> s C_ X ) |
32 |
29 31
|
ssfid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> s e. Fin ) |
33 |
|
hashsdom |
|- ( ( { ( 0g ` G ) } e. Fin /\ s e. Fin ) -> ( ( # ` { ( 0g ` G ) } ) < ( # ` s ) <-> { ( 0g ` G ) } ~< s ) ) |
34 |
28 32 33
|
sylancr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( ( # ` { ( 0g ` G ) } ) < ( # ` s ) <-> { ( 0g ` G ) } ~< s ) ) |
35 |
27 34
|
mpbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> { ( 0g ` G ) } ~< s ) |
36 |
|
sdomdif |
|- ( { ( 0g ` G ) } ~< s -> ( s \ { ( 0g ` G ) } ) =/= (/) ) |
37 |
35 36
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( s \ { ( 0g ` G ) } ) =/= (/) ) |
38 |
|
n0 |
|- ( ( s \ { ( 0g ` G ) } ) =/= (/) <-> E. g g e. ( s \ { ( 0g ` G ) } ) ) |
39 |
37 38
|
sylib |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> E. g g e. ( s \ { ( 0g ` G ) } ) ) |
40 |
|
eldifsn |
|- ( g e. ( s \ { ( 0g ` G ) } ) <-> ( g e. s /\ g =/= ( 0g ` G ) ) ) |
41 |
31
|
adantrr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> s C_ X ) |
42 |
|
simprrl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> g e. s ) |
43 |
41 42
|
sseldd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> g e. X ) |
44 |
|
simprrr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> g =/= ( 0g ` G ) ) |
45 |
|
simprll |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> s e. ( SubGrp ` G ) ) |
46 |
32
|
adantrr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> s e. Fin ) |
47 |
2
|
odsubdvds |
|- ( ( s e. ( SubGrp ` G ) /\ s e. Fin /\ g e. s ) -> ( O ` g ) || ( # ` s ) ) |
48 |
45 46 42 47
|
syl3anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) || ( # ` s ) ) |
49 |
|
simprlr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( # ` s ) = P ) |
50 |
48 49
|
breqtrd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) || P ) |
51 |
3
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> G e. Grp ) |
52 |
4
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> X e. Fin ) |
53 |
1 2
|
odcl2 |
|- ( ( G e. Grp /\ X e. Fin /\ g e. X ) -> ( O ` g ) e. NN ) |
54 |
51 52 43 53
|
syl3anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) e. NN ) |
55 |
|
dvdsprime |
|- ( ( P e. Prime /\ ( O ` g ) e. NN ) -> ( ( O ` g ) || P <-> ( ( O ` g ) = P \/ ( O ` g ) = 1 ) ) ) |
56 |
5 54 55
|
syl2an2r |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( ( O ` g ) || P <-> ( ( O ` g ) = P \/ ( O ` g ) = 1 ) ) ) |
57 |
50 56
|
mpbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( ( O ` g ) = P \/ ( O ` g ) = 1 ) ) |
58 |
57
|
ord |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( -. ( O ` g ) = P -> ( O ` g ) = 1 ) ) |
59 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
60 |
2 59 1
|
odeq1 |
|- ( ( G e. Grp /\ g e. X ) -> ( ( O ` g ) = 1 <-> g = ( 0g ` G ) ) ) |
61 |
3 43 60
|
syl2an2r |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( ( O ` g ) = 1 <-> g = ( 0g ` G ) ) ) |
62 |
58 61
|
sylibd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( -. ( O ` g ) = P -> g = ( 0g ` G ) ) ) |
63 |
62
|
necon1ad |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( g =/= ( 0g ` G ) -> ( O ` g ) = P ) ) |
64 |
44 63
|
mpd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) = P ) |
65 |
43 64
|
jca |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( g e. X /\ ( O ` g ) = P ) ) |
66 |
65
|
expr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( ( g e. s /\ g =/= ( 0g ` G ) ) -> ( g e. X /\ ( O ` g ) = P ) ) ) |
67 |
40 66
|
syl5bi |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( g e. ( s \ { ( 0g ` G ) } ) -> ( g e. X /\ ( O ` g ) = P ) ) ) |
68 |
67
|
eximdv |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( E. g g e. ( s \ { ( 0g ` G ) } ) -> E. g ( g e. X /\ ( O ` g ) = P ) ) ) |
69 |
39 68
|
mpd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> E. g ( g e. X /\ ( O ` g ) = P ) ) |
70 |
|
df-rex |
|- ( E. g e. X ( O ` g ) = P <-> E. g ( g e. X /\ ( O ` g ) = P ) ) |
71 |
69 70
|
sylibr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> E. g e. X ( O ` g ) = P ) |
72 |
71
|
expr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ s e. ( SubGrp ` G ) ) -> ( ( # ` s ) = P -> E. g e. X ( O ` g ) = P ) ) |
73 |
16 72
|
sylbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ s e. ( SubGrp ` G ) ) -> ( ( # ` s ) = ( P ^ 1 ) -> E. g e. X ( O ` g ) = P ) ) |
74 |
73
|
rexlimdva |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( E. s e. ( SubGrp ` G ) ( # ` s ) = ( P ^ 1 ) -> E. g e. X ( O ` g ) = P ) ) |
75 |
14 74
|
mpd |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> E. g e. X ( O ` g ) = P ) |