Metamath Proof Explorer


Theorem odcld

Description: The order of a group element is always a nonnegative integer, deduction form of odcl . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses odcld.1
|- B = ( Base ` G )
odcld.2
|- O = ( od ` G )
odcld.3
|- ( ph -> A e. B )
Assertion odcld
|- ( ph -> ( O ` A ) e. NN0 )

Proof

Step Hyp Ref Expression
1 odcld.1
 |-  B = ( Base ` G )
2 odcld.2
 |-  O = ( od ` G )
3 odcld.3
 |-  ( ph -> A e. B )
4 1 2 odcl
 |-  ( A e. B -> ( O ` A ) e. NN0 )
5 3 4 syl
 |-  ( ph -> ( O ` A ) e. NN0 )