Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
divides |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. k e. ZZ ( k x. 2 ) = N ) ) |
3 |
1 2
|
mpan |
|- ( N e. ZZ -> ( 2 || N <-> E. k e. ZZ ( k x. 2 ) = N ) ) |
4 |
3
|
notbid |
|- ( N e. ZZ -> ( -. 2 || N <-> -. E. k e. ZZ ( k x. 2 ) = N ) ) |
5 |
|
elznn0 |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
6 |
|
odd2np1lem |
|- ( N e. NN0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
7 |
6
|
adantl |
|- ( ( N e. RR /\ N e. NN0 ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
8 |
|
peano2z |
|- ( x e. ZZ -> ( x + 1 ) e. ZZ ) |
9 |
|
znegcl |
|- ( ( x + 1 ) e. ZZ -> -u ( x + 1 ) e. ZZ ) |
10 |
8 9
|
syl |
|- ( x e. ZZ -> -u ( x + 1 ) e. ZZ ) |
11 |
10
|
ad2antlr |
|- ( ( ( N e. RR /\ x e. ZZ ) /\ ( ( 2 x. x ) + 1 ) = -u N ) -> -u ( x + 1 ) e. ZZ ) |
12 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
mulcl |
|- ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) |
15 |
13 14
|
mpan |
|- ( x e. CC -> ( 2 x. x ) e. CC ) |
16 |
|
peano2cn |
|- ( ( 2 x. x ) e. CC -> ( ( 2 x. x ) + 1 ) e. CC ) |
17 |
15 16
|
syl |
|- ( x e. CC -> ( ( 2 x. x ) + 1 ) e. CC ) |
18 |
12 17
|
syl |
|- ( x e. ZZ -> ( ( 2 x. x ) + 1 ) e. CC ) |
19 |
18
|
adantl |
|- ( ( N e. RR /\ x e. ZZ ) -> ( ( 2 x. x ) + 1 ) e. CC ) |
20 |
|
simpl |
|- ( ( N e. RR /\ x e. ZZ ) -> N e. RR ) |
21 |
20
|
recnd |
|- ( ( N e. RR /\ x e. ZZ ) -> N e. CC ) |
22 |
|
negcon2 |
|- ( ( ( ( 2 x. x ) + 1 ) e. CC /\ N e. CC ) -> ( ( ( 2 x. x ) + 1 ) = -u N <-> N = -u ( ( 2 x. x ) + 1 ) ) ) |
23 |
19 21 22
|
syl2anc |
|- ( ( N e. RR /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = -u N <-> N = -u ( ( 2 x. x ) + 1 ) ) ) |
24 |
|
eqcom |
|- ( N = -u ( ( 2 x. x ) + 1 ) <-> -u ( ( 2 x. x ) + 1 ) = N ) |
25 |
13 12 14
|
sylancr |
|- ( x e. ZZ -> ( 2 x. x ) e. CC ) |
26 |
|
ax-1cn |
|- 1 e. CC |
27 |
13 26
|
mulcli |
|- ( 2 x. 1 ) e. CC |
28 |
|
addsubass |
|- ( ( ( 2 x. x ) e. CC /\ ( 2 x. 1 ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) ) |
29 |
27 26 28
|
mp3an23 |
|- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) ) |
30 |
25 29
|
syl |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) ) |
31 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
32 |
31
|
oveq1i |
|- ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 ) |
33 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
34 |
32 33
|
eqtri |
|- ( ( 2 x. 1 ) - 1 ) = 1 |
35 |
34
|
oveq2i |
|- ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) = ( ( 2 x. x ) + 1 ) |
36 |
30 35
|
eqtr2di |
|- ( x e. ZZ -> ( ( 2 x. x ) + 1 ) = ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) ) |
37 |
|
adddi |
|- ( ( 2 e. CC /\ x e. CC /\ 1 e. CC ) -> ( 2 x. ( x + 1 ) ) = ( ( 2 x. x ) + ( 2 x. 1 ) ) ) |
38 |
13 26 37
|
mp3an13 |
|- ( x e. CC -> ( 2 x. ( x + 1 ) ) = ( ( 2 x. x ) + ( 2 x. 1 ) ) ) |
39 |
12 38
|
syl |
|- ( x e. ZZ -> ( 2 x. ( x + 1 ) ) = ( ( 2 x. x ) + ( 2 x. 1 ) ) ) |
40 |
39
|
oveq1d |
|- ( x e. ZZ -> ( ( 2 x. ( x + 1 ) ) - 1 ) = ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) ) |
41 |
36 40
|
eqtr4d |
|- ( x e. ZZ -> ( ( 2 x. x ) + 1 ) = ( ( 2 x. ( x + 1 ) ) - 1 ) ) |
42 |
41
|
negeqd |
|- ( x e. ZZ -> -u ( ( 2 x. x ) + 1 ) = -u ( ( 2 x. ( x + 1 ) ) - 1 ) ) |
43 |
8
|
zcnd |
|- ( x e. ZZ -> ( x + 1 ) e. CC ) |
44 |
|
mulneg2 |
|- ( ( 2 e. CC /\ ( x + 1 ) e. CC ) -> ( 2 x. -u ( x + 1 ) ) = -u ( 2 x. ( x + 1 ) ) ) |
45 |
13 43 44
|
sylancr |
|- ( x e. ZZ -> ( 2 x. -u ( x + 1 ) ) = -u ( 2 x. ( x + 1 ) ) ) |
46 |
45
|
oveq1d |
|- ( x e. ZZ -> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = ( -u ( 2 x. ( x + 1 ) ) + 1 ) ) |
47 |
|
mulcl |
|- ( ( 2 e. CC /\ ( x + 1 ) e. CC ) -> ( 2 x. ( x + 1 ) ) e. CC ) |
48 |
13 43 47
|
sylancr |
|- ( x e. ZZ -> ( 2 x. ( x + 1 ) ) e. CC ) |
49 |
|
negsubdi |
|- ( ( ( 2 x. ( x + 1 ) ) e. CC /\ 1 e. CC ) -> -u ( ( 2 x. ( x + 1 ) ) - 1 ) = ( -u ( 2 x. ( x + 1 ) ) + 1 ) ) |
50 |
48 26 49
|
sylancl |
|- ( x e. ZZ -> -u ( ( 2 x. ( x + 1 ) ) - 1 ) = ( -u ( 2 x. ( x + 1 ) ) + 1 ) ) |
51 |
46 50
|
eqtr4d |
|- ( x e. ZZ -> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = -u ( ( 2 x. ( x + 1 ) ) - 1 ) ) |
52 |
42 51
|
eqtr4d |
|- ( x e. ZZ -> -u ( ( 2 x. x ) + 1 ) = ( ( 2 x. -u ( x + 1 ) ) + 1 ) ) |
53 |
52
|
adantl |
|- ( ( N e. RR /\ x e. ZZ ) -> -u ( ( 2 x. x ) + 1 ) = ( ( 2 x. -u ( x + 1 ) ) + 1 ) ) |
54 |
53
|
eqeq1d |
|- ( ( N e. RR /\ x e. ZZ ) -> ( -u ( ( 2 x. x ) + 1 ) = N <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
55 |
24 54
|
syl5bb |
|- ( ( N e. RR /\ x e. ZZ ) -> ( N = -u ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
56 |
23 55
|
bitrd |
|- ( ( N e. RR /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = -u N <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
57 |
56
|
biimpa |
|- ( ( ( N e. RR /\ x e. ZZ ) /\ ( ( 2 x. x ) + 1 ) = -u N ) -> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) |
58 |
|
oveq2 |
|- ( n = -u ( x + 1 ) -> ( 2 x. n ) = ( 2 x. -u ( x + 1 ) ) ) |
59 |
58
|
oveq1d |
|- ( n = -u ( x + 1 ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. -u ( x + 1 ) ) + 1 ) ) |
60 |
59
|
eqeq1d |
|- ( n = -u ( x + 1 ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
61 |
60
|
rspcev |
|- ( ( -u ( x + 1 ) e. ZZ /\ ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
62 |
11 57 61
|
syl2anc |
|- ( ( ( N e. RR /\ x e. ZZ ) /\ ( ( 2 x. x ) + 1 ) = -u N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
63 |
62
|
rexlimdva2 |
|- ( N e. RR -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = -u N -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
64 |
|
znegcl |
|- ( y e. ZZ -> -u y e. ZZ ) |
65 |
64
|
ad2antlr |
|- ( ( ( N e. RR /\ y e. ZZ ) /\ ( y x. 2 ) = -u N ) -> -u y e. ZZ ) |
66 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
67 |
|
mulcl |
|- ( ( y e. CC /\ 2 e. CC ) -> ( y x. 2 ) e. CC ) |
68 |
66 13 67
|
sylancl |
|- ( y e. ZZ -> ( y x. 2 ) e. CC ) |
69 |
|
recn |
|- ( N e. RR -> N e. CC ) |
70 |
|
negcon2 |
|- ( ( ( y x. 2 ) e. CC /\ N e. CC ) -> ( ( y x. 2 ) = -u N <-> N = -u ( y x. 2 ) ) ) |
71 |
68 69 70
|
syl2anr |
|- ( ( N e. RR /\ y e. ZZ ) -> ( ( y x. 2 ) = -u N <-> N = -u ( y x. 2 ) ) ) |
72 |
|
eqcom |
|- ( N = -u ( y x. 2 ) <-> -u ( y x. 2 ) = N ) |
73 |
|
mulneg1 |
|- ( ( y e. CC /\ 2 e. CC ) -> ( -u y x. 2 ) = -u ( y x. 2 ) ) |
74 |
66 13 73
|
sylancl |
|- ( y e. ZZ -> ( -u y x. 2 ) = -u ( y x. 2 ) ) |
75 |
74
|
adantl |
|- ( ( N e. RR /\ y e. ZZ ) -> ( -u y x. 2 ) = -u ( y x. 2 ) ) |
76 |
75
|
eqeq1d |
|- ( ( N e. RR /\ y e. ZZ ) -> ( ( -u y x. 2 ) = N <-> -u ( y x. 2 ) = N ) ) |
77 |
72 76
|
bitr4id |
|- ( ( N e. RR /\ y e. ZZ ) -> ( N = -u ( y x. 2 ) <-> ( -u y x. 2 ) = N ) ) |
78 |
71 77
|
bitrd |
|- ( ( N e. RR /\ y e. ZZ ) -> ( ( y x. 2 ) = -u N <-> ( -u y x. 2 ) = N ) ) |
79 |
78
|
biimpa |
|- ( ( ( N e. RR /\ y e. ZZ ) /\ ( y x. 2 ) = -u N ) -> ( -u y x. 2 ) = N ) |
80 |
|
oveq1 |
|- ( k = -u y -> ( k x. 2 ) = ( -u y x. 2 ) ) |
81 |
80
|
eqeq1d |
|- ( k = -u y -> ( ( k x. 2 ) = N <-> ( -u y x. 2 ) = N ) ) |
82 |
81
|
rspcev |
|- ( ( -u y e. ZZ /\ ( -u y x. 2 ) = N ) -> E. k e. ZZ ( k x. 2 ) = N ) |
83 |
65 79 82
|
syl2anc |
|- ( ( ( N e. RR /\ y e. ZZ ) /\ ( y x. 2 ) = -u N ) -> E. k e. ZZ ( k x. 2 ) = N ) |
84 |
83
|
rexlimdva2 |
|- ( N e. RR -> ( E. y e. ZZ ( y x. 2 ) = -u N -> E. k e. ZZ ( k x. 2 ) = N ) ) |
85 |
63 84
|
orim12d |
|- ( N e. RR -> ( ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = -u N \/ E. y e. ZZ ( y x. 2 ) = -u N ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) ) |
86 |
|
odd2np1lem |
|- ( -u N e. NN0 -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = -u N \/ E. y e. ZZ ( y x. 2 ) = -u N ) ) |
87 |
85 86
|
impel |
|- ( ( N e. RR /\ -u N e. NN0 ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
88 |
7 87
|
jaodan |
|- ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
89 |
5 88
|
sylbi |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
90 |
|
halfnz |
|- -. ( 1 / 2 ) e. ZZ |
91 |
|
reeanv |
|- ( E. n e. ZZ E. k e. ZZ ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) ) |
92 |
|
eqtr3 |
|- ( ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) -> ( ( 2 x. n ) + 1 ) = ( k x. 2 ) ) |
93 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
94 |
|
mulcom |
|- ( ( k e. CC /\ 2 e. CC ) -> ( k x. 2 ) = ( 2 x. k ) ) |
95 |
93 13 94
|
sylancl |
|- ( k e. ZZ -> ( k x. 2 ) = ( 2 x. k ) ) |
96 |
95
|
eqeq2d |
|- ( k e. ZZ -> ( ( ( 2 x. n ) + 1 ) = ( k x. 2 ) <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
97 |
96
|
adantl |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = ( k x. 2 ) <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
98 |
|
mulcl |
|- ( ( 2 e. CC /\ k e. CC ) -> ( 2 x. k ) e. CC ) |
99 |
13 93 98
|
sylancr |
|- ( k e. ZZ -> ( 2 x. k ) e. CC ) |
100 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
101 |
|
mulcl |
|- ( ( 2 e. CC /\ n e. CC ) -> ( 2 x. n ) e. CC ) |
102 |
13 100 101
|
sylancr |
|- ( n e. ZZ -> ( 2 x. n ) e. CC ) |
103 |
|
subadd |
|- ( ( ( 2 x. k ) e. CC /\ ( 2 x. n ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
104 |
26 103
|
mp3an3 |
|- ( ( ( 2 x. k ) e. CC /\ ( 2 x. n ) e. CC ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
105 |
99 102 104
|
syl2anr |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
106 |
|
subcl |
|- ( ( k e. CC /\ n e. CC ) -> ( k - n ) e. CC ) |
107 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
108 |
|
eqcom |
|- ( ( k - n ) = ( 1 / 2 ) <-> ( 1 / 2 ) = ( k - n ) ) |
109 |
|
divmul |
|- ( ( 1 e. CC /\ ( k - n ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 1 / 2 ) = ( k - n ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
110 |
108 109
|
syl5bb |
|- ( ( 1 e. CC /\ ( k - n ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
111 |
26 107 110
|
mp3an13 |
|- ( ( k - n ) e. CC -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
112 |
106 111
|
syl |
|- ( ( k e. CC /\ n e. CC ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
113 |
112
|
ancoms |
|- ( ( n e. CC /\ k e. CC ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
114 |
|
subdi |
|- ( ( 2 e. CC /\ k e. CC /\ n e. CC ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
115 |
13 114
|
mp3an1 |
|- ( ( k e. CC /\ n e. CC ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
116 |
115
|
ancoms |
|- ( ( n e. CC /\ k e. CC ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
117 |
116
|
eqeq1d |
|- ( ( n e. CC /\ k e. CC ) -> ( ( 2 x. ( k - n ) ) = 1 <-> ( ( 2 x. k ) - ( 2 x. n ) ) = 1 ) ) |
118 |
113 117
|
bitrd |
|- ( ( n e. CC /\ k e. CC ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( ( 2 x. k ) - ( 2 x. n ) ) = 1 ) ) |
119 |
100 93 118
|
syl2an |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( ( 2 x. k ) - ( 2 x. n ) ) = 1 ) ) |
120 |
|
zsubcl |
|- ( ( k e. ZZ /\ n e. ZZ ) -> ( k - n ) e. ZZ ) |
121 |
|
eleq1 |
|- ( ( k - n ) = ( 1 / 2 ) -> ( ( k - n ) e. ZZ <-> ( 1 / 2 ) e. ZZ ) ) |
122 |
120 121
|
syl5ibcom |
|- ( ( k e. ZZ /\ n e. ZZ ) -> ( ( k - n ) = ( 1 / 2 ) -> ( 1 / 2 ) e. ZZ ) ) |
123 |
122
|
ancoms |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( k - n ) = ( 1 / 2 ) -> ( 1 / 2 ) e. ZZ ) ) |
124 |
119 123
|
sylbird |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 -> ( 1 / 2 ) e. ZZ ) ) |
125 |
105 124
|
sylbird |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = ( 2 x. k ) -> ( 1 / 2 ) e. ZZ ) ) |
126 |
97 125
|
sylbid |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = ( k x. 2 ) -> ( 1 / 2 ) e. ZZ ) ) |
127 |
92 126
|
syl5 |
|- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) -> ( 1 / 2 ) e. ZZ ) ) |
128 |
127
|
rexlimivv |
|- ( E. n e. ZZ E. k e. ZZ ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) -> ( 1 / 2 ) e. ZZ ) |
129 |
91 128
|
sylbir |
|- ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) -> ( 1 / 2 ) e. ZZ ) |
130 |
90 129
|
mto |
|- -. ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) |
131 |
|
pm5.17 |
|- ( ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) /\ -. ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> -. E. k e. ZZ ( k x. 2 ) = N ) ) |
132 |
|
bicom |
|- ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> -. E. k e. ZZ ( k x. 2 ) = N ) <-> ( -. E. k e. ZZ ( k x. 2 ) = N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
133 |
131 132
|
bitri |
|- ( ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) /\ -. ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) ) <-> ( -. E. k e. ZZ ( k x. 2 ) = N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
134 |
89 130 133
|
sylanblc |
|- ( N e. ZZ -> ( -. E. k e. ZZ ( k x. 2 ) = N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
135 |
4 134
|
bitrd |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |