| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
|- ( j = 0 -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = 0 ) ) |
| 2 |
1
|
rexbidv |
|- ( j = 0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = 0 ) ) |
| 3 |
|
eqeq2 |
|- ( j = 0 -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = 0 ) ) |
| 4 |
3
|
rexbidv |
|- ( j = 0 -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = 0 ) ) |
| 5 |
2 4
|
orbi12d |
|- ( j = 0 -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = 0 \/ E. k e. ZZ ( k x. 2 ) = 0 ) ) ) |
| 6 |
|
eqeq2 |
|- ( j = m -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = m ) ) |
| 7 |
6
|
rexbidv |
|- ( j = m -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = m ) ) |
| 8 |
|
oveq2 |
|- ( n = x -> ( 2 x. n ) = ( 2 x. x ) ) |
| 9 |
8
|
oveq1d |
|- ( n = x -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. x ) + 1 ) ) |
| 10 |
9
|
eqeq1d |
|- ( n = x -> ( ( ( 2 x. n ) + 1 ) = m <-> ( ( 2 x. x ) + 1 ) = m ) ) |
| 11 |
10
|
cbvrexvw |
|- ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = m <-> E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) |
| 12 |
7 11
|
bitrdi |
|- ( j = m -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) ) |
| 13 |
|
eqeq2 |
|- ( j = m -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = m ) ) |
| 14 |
13
|
rexbidv |
|- ( j = m -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = m ) ) |
| 15 |
|
oveq1 |
|- ( k = y -> ( k x. 2 ) = ( y x. 2 ) ) |
| 16 |
15
|
eqeq1d |
|- ( k = y -> ( ( k x. 2 ) = m <-> ( y x. 2 ) = m ) ) |
| 17 |
16
|
cbvrexvw |
|- ( E. k e. ZZ ( k x. 2 ) = m <-> E. y e. ZZ ( y x. 2 ) = m ) |
| 18 |
14 17
|
bitrdi |
|- ( j = m -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. y e. ZZ ( y x. 2 ) = m ) ) |
| 19 |
12 18
|
orbi12d |
|- ( j = m -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m \/ E. y e. ZZ ( y x. 2 ) = m ) ) ) |
| 20 |
|
eqeq2 |
|- ( j = ( m + 1 ) -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 21 |
20
|
rexbidv |
|- ( j = ( m + 1 ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 22 |
|
eqeq2 |
|- ( j = ( m + 1 ) -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = ( m + 1 ) ) ) |
| 23 |
22
|
rexbidv |
|- ( j = ( m + 1 ) -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 24 |
21 23
|
orbi12d |
|- ( j = ( m + 1 ) -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) \/ E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) ) |
| 25 |
|
eqeq2 |
|- ( j = N -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = N ) ) |
| 26 |
25
|
rexbidv |
|- ( j = N -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 27 |
|
eqeq2 |
|- ( j = N -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = N ) ) |
| 28 |
27
|
rexbidv |
|- ( j = N -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = N ) ) |
| 29 |
26 28
|
orbi12d |
|- ( j = N -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) ) |
| 30 |
|
0z |
|- 0 e. ZZ |
| 31 |
|
2cn |
|- 2 e. CC |
| 32 |
31
|
mul02i |
|- ( 0 x. 2 ) = 0 |
| 33 |
|
oveq1 |
|- ( k = 0 -> ( k x. 2 ) = ( 0 x. 2 ) ) |
| 34 |
33
|
eqeq1d |
|- ( k = 0 -> ( ( k x. 2 ) = 0 <-> ( 0 x. 2 ) = 0 ) ) |
| 35 |
34
|
rspcev |
|- ( ( 0 e. ZZ /\ ( 0 x. 2 ) = 0 ) -> E. k e. ZZ ( k x. 2 ) = 0 ) |
| 36 |
30 32 35
|
mp2an |
|- E. k e. ZZ ( k x. 2 ) = 0 |
| 37 |
36
|
olci |
|- ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = 0 \/ E. k e. ZZ ( k x. 2 ) = 0 ) |
| 38 |
|
orcom |
|- ( ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m \/ E. y e. ZZ ( y x. 2 ) = m ) <-> ( E. y e. ZZ ( y x. 2 ) = m \/ E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) ) |
| 39 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 40 |
|
mulcom |
|- ( ( y e. CC /\ 2 e. CC ) -> ( y x. 2 ) = ( 2 x. y ) ) |
| 41 |
39 31 40
|
sylancl |
|- ( y e. ZZ -> ( y x. 2 ) = ( 2 x. y ) ) |
| 42 |
41
|
adantl |
|- ( ( m e. NN0 /\ y e. ZZ ) -> ( y x. 2 ) = ( 2 x. y ) ) |
| 43 |
42
|
eqeq1d |
|- ( ( m e. NN0 /\ y e. ZZ ) -> ( ( y x. 2 ) = m <-> ( 2 x. y ) = m ) ) |
| 44 |
|
eqid |
|- ( ( 2 x. y ) + 1 ) = ( ( 2 x. y ) + 1 ) |
| 45 |
|
oveq2 |
|- ( n = y -> ( 2 x. n ) = ( 2 x. y ) ) |
| 46 |
45
|
oveq1d |
|- ( n = y -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) ) |
| 47 |
46
|
eqeq1d |
|- ( n = y -> ( ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) <-> ( ( 2 x. y ) + 1 ) = ( ( 2 x. y ) + 1 ) ) ) |
| 48 |
47
|
rspcev |
|- ( ( y e. ZZ /\ ( ( 2 x. y ) + 1 ) = ( ( 2 x. y ) + 1 ) ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) ) |
| 49 |
44 48
|
mpan2 |
|- ( y e. ZZ -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) ) |
| 50 |
|
oveq1 |
|- ( ( 2 x. y ) = m -> ( ( 2 x. y ) + 1 ) = ( m + 1 ) ) |
| 51 |
50
|
eqeq2d |
|- ( ( 2 x. y ) = m -> ( ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) <-> ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 52 |
51
|
rexbidv |
|- ( ( 2 x. y ) = m -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 53 |
49 52
|
syl5ibcom |
|- ( y e. ZZ -> ( ( 2 x. y ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 54 |
53
|
adantl |
|- ( ( m e. NN0 /\ y e. ZZ ) -> ( ( 2 x. y ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 55 |
43 54
|
sylbid |
|- ( ( m e. NN0 /\ y e. ZZ ) -> ( ( y x. 2 ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 56 |
55
|
rexlimdva |
|- ( m e. NN0 -> ( E. y e. ZZ ( y x. 2 ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 57 |
|
peano2z |
|- ( x e. ZZ -> ( x + 1 ) e. ZZ ) |
| 58 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 59 |
|
mulcom |
|- ( ( x e. CC /\ 2 e. CC ) -> ( x x. 2 ) = ( 2 x. x ) ) |
| 60 |
31 59
|
mpan2 |
|- ( x e. CC -> ( x x. 2 ) = ( 2 x. x ) ) |
| 61 |
31
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 62 |
61
|
a1i |
|- ( x e. CC -> ( 1 x. 2 ) = 2 ) |
| 63 |
60 62
|
oveq12d |
|- ( x e. CC -> ( ( x x. 2 ) + ( 1 x. 2 ) ) = ( ( 2 x. x ) + 2 ) ) |
| 64 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 65 |
64
|
oveq2i |
|- ( ( 2 x. x ) + 2 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) |
| 66 |
63 65
|
eqtrdi |
|- ( x e. CC -> ( ( x x. 2 ) + ( 1 x. 2 ) ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 67 |
|
ax-1cn |
|- 1 e. CC |
| 68 |
|
adddir |
|- ( ( x e. CC /\ 1 e. CC /\ 2 e. CC ) -> ( ( x + 1 ) x. 2 ) = ( ( x x. 2 ) + ( 1 x. 2 ) ) ) |
| 69 |
67 31 68
|
mp3an23 |
|- ( x e. CC -> ( ( x + 1 ) x. 2 ) = ( ( x x. 2 ) + ( 1 x. 2 ) ) ) |
| 70 |
|
mulcl |
|- ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) |
| 71 |
31 70
|
mpan |
|- ( x e. CC -> ( 2 x. x ) e. CC ) |
| 72 |
|
addass |
|- ( ( ( 2 x. x ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 73 |
67 67 72
|
mp3an23 |
|- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 74 |
71 73
|
syl |
|- ( x e. CC -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 75 |
66 69 74
|
3eqtr4d |
|- ( x e. CC -> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 76 |
58 75
|
syl |
|- ( x e. ZZ -> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 77 |
76
|
adantl |
|- ( ( m e. NN0 /\ x e. ZZ ) -> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 78 |
|
oveq1 |
|- ( k = ( x + 1 ) -> ( k x. 2 ) = ( ( x + 1 ) x. 2 ) ) |
| 79 |
78
|
eqeq1d |
|- ( k = ( x + 1 ) -> ( ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) <-> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) ) |
| 80 |
79
|
rspcev |
|- ( ( ( x + 1 ) e. ZZ /\ ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) -> E. k e. ZZ ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 81 |
57 77 80
|
syl2an2 |
|- ( ( m e. NN0 /\ x e. ZZ ) -> E. k e. ZZ ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 82 |
|
oveq1 |
|- ( ( ( 2 x. x ) + 1 ) = m -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( m + 1 ) ) |
| 83 |
82
|
eqeq2d |
|- ( ( ( 2 x. x ) + 1 ) = m -> ( ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) <-> ( k x. 2 ) = ( m + 1 ) ) ) |
| 84 |
83
|
rexbidv |
|- ( ( ( 2 x. x ) + 1 ) = m -> ( E. k e. ZZ ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) <-> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 85 |
81 84
|
syl5ibcom |
|- ( ( m e. NN0 /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = m -> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 86 |
85
|
rexlimdva |
|- ( m e. NN0 -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m -> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 87 |
56 86
|
orim12d |
|- ( m e. NN0 -> ( ( E. y e. ZZ ( y x. 2 ) = m \/ E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) \/ E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) ) |
| 88 |
38 87
|
biimtrid |
|- ( m e. NN0 -> ( ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m \/ E. y e. ZZ ( y x. 2 ) = m ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) \/ E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) ) |
| 89 |
5 19 24 29 37 88
|
nn0ind |
|- ( N e. NN0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |