Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( N = ( P + Q ) -> ( N e. Odd <-> ( P + Q ) e. Odd ) ) |
2 |
|
evennodd |
|- ( ( P + Q ) e. Even -> -. ( P + Q ) e. Odd ) |
3 |
2
|
pm2.21d |
|- ( ( P + Q ) e. Even -> ( ( P + Q ) e. Odd -> ( P = 2 \/ Q = 2 ) ) ) |
4 |
|
df-ne |
|- ( P =/= 2 <-> -. P = 2 ) |
5 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
6 |
|
oddprmALTV |
|- ( P e. ( Prime \ { 2 } ) -> P e. Odd ) |
7 |
5 6
|
sylbir |
|- ( ( P e. Prime /\ P =/= 2 ) -> P e. Odd ) |
8 |
7
|
ex |
|- ( P e. Prime -> ( P =/= 2 -> P e. Odd ) ) |
9 |
4 8
|
syl5bir |
|- ( P e. Prime -> ( -. P = 2 -> P e. Odd ) ) |
10 |
|
df-ne |
|- ( Q =/= 2 <-> -. Q = 2 ) |
11 |
|
eldifsn |
|- ( Q e. ( Prime \ { 2 } ) <-> ( Q e. Prime /\ Q =/= 2 ) ) |
12 |
|
oddprmALTV |
|- ( Q e. ( Prime \ { 2 } ) -> Q e. Odd ) |
13 |
11 12
|
sylbir |
|- ( ( Q e. Prime /\ Q =/= 2 ) -> Q e. Odd ) |
14 |
13
|
ex |
|- ( Q e. Prime -> ( Q =/= 2 -> Q e. Odd ) ) |
15 |
10 14
|
syl5bir |
|- ( Q e. Prime -> ( -. Q = 2 -> Q e. Odd ) ) |
16 |
9 15
|
im2anan9 |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P e. Odd /\ Q e. Odd ) ) ) |
17 |
16
|
imp |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P e. Odd /\ Q e. Odd ) ) |
18 |
|
opoeALTV |
|- ( ( P e. Odd /\ Q e. Odd ) -> ( P + Q ) e. Even ) |
19 |
17 18
|
syl |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P + Q ) e. Even ) |
20 |
3 19
|
syl11 |
|- ( ( P + Q ) e. Odd -> ( ( ( P e. Prime /\ Q e. Prime ) /\ ( -. P = 2 /\ -. Q = 2 ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
21 |
20
|
expd |
|- ( ( P + Q ) e. Odd -> ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) ) |
22 |
1 21
|
syl6bi |
|- ( N = ( P + Q ) -> ( N e. Odd -> ( ( P e. Prime /\ Q e. Prime ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) ) ) |
23 |
22
|
3imp231 |
|- ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( ( -. P = 2 /\ -. Q = 2 ) -> ( P = 2 \/ Q = 2 ) ) ) |
24 |
23
|
com12 |
|- ( ( -. P = 2 /\ -. Q = 2 ) -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
25 |
24
|
ex |
|- ( -. P = 2 -> ( -. Q = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) ) |
26 |
|
orc |
|- ( P = 2 -> ( P = 2 \/ Q = 2 ) ) |
27 |
26
|
a1d |
|- ( P = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
28 |
|
olc |
|- ( Q = 2 -> ( P = 2 \/ Q = 2 ) ) |
29 |
28
|
a1d |
|- ( Q = 2 -> ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) ) |
30 |
25 27 29
|
pm2.61ii |
|- ( ( N e. Odd /\ ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> ( P = 2 \/ Q = 2 ) ) |