Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) <-> N e. ( ZZ>= ` 2 ) ) ) |
2 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
3 |
2
|
adantl |
|- ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> n e. ZZ ) |
4 |
|
eluz2 |
|- ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( ( 2 x. n ) + 1 ) e. ZZ /\ 2 <_ ( ( 2 x. n ) + 1 ) ) ) |
5 |
|
2re |
|- 2 e. RR |
6 |
5
|
a1i |
|- ( n e. NN0 -> 2 e. RR ) |
7 |
|
1red |
|- ( n e. NN0 -> 1 e. RR ) |
8 |
|
2nn0 |
|- 2 e. NN0 |
9 |
8
|
a1i |
|- ( n e. NN0 -> 2 e. NN0 ) |
10 |
|
id |
|- ( n e. NN0 -> n e. NN0 ) |
11 |
9 10
|
nn0mulcld |
|- ( n e. NN0 -> ( 2 x. n ) e. NN0 ) |
12 |
11
|
nn0red |
|- ( n e. NN0 -> ( 2 x. n ) e. RR ) |
13 |
6 7 12
|
lesubaddd |
|- ( n e. NN0 -> ( ( 2 - 1 ) <_ ( 2 x. n ) <-> 2 <_ ( ( 2 x. n ) + 1 ) ) ) |
14 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
15 |
14
|
breq1i |
|- ( ( 2 - 1 ) <_ ( 2 x. n ) <-> 1 <_ ( 2 x. n ) ) |
16 |
|
nn0re |
|- ( n e. NN0 -> n e. RR ) |
17 |
|
2rp |
|- 2 e. RR+ |
18 |
17
|
a1i |
|- ( n e. NN0 -> 2 e. RR+ ) |
19 |
7 16 18
|
ledivmuld |
|- ( n e. NN0 -> ( ( 1 / 2 ) <_ n <-> 1 <_ ( 2 x. n ) ) ) |
20 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
21 |
|
0red |
|- ( n e. NN0 -> 0 e. RR ) |
22 |
|
halfre |
|- ( 1 / 2 ) e. RR |
23 |
22
|
a1i |
|- ( n e. NN0 -> ( 1 / 2 ) e. RR ) |
24 |
|
ltletr |
|- ( ( 0 e. RR /\ ( 1 / 2 ) e. RR /\ n e. RR ) -> ( ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) <_ n ) -> 0 < n ) ) |
25 |
21 23 16 24
|
syl3anc |
|- ( n e. NN0 -> ( ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) <_ n ) -> 0 < n ) ) |
26 |
20 25
|
mpani |
|- ( n e. NN0 -> ( ( 1 / 2 ) <_ n -> 0 < n ) ) |
27 |
19 26
|
sylbird |
|- ( n e. NN0 -> ( 1 <_ ( 2 x. n ) -> 0 < n ) ) |
28 |
15 27
|
syl5bi |
|- ( n e. NN0 -> ( ( 2 - 1 ) <_ ( 2 x. n ) -> 0 < n ) ) |
29 |
13 28
|
sylbird |
|- ( n e. NN0 -> ( 2 <_ ( ( 2 x. n ) + 1 ) -> 0 < n ) ) |
30 |
29
|
com12 |
|- ( 2 <_ ( ( 2 x. n ) + 1 ) -> ( n e. NN0 -> 0 < n ) ) |
31 |
30
|
3ad2ant3 |
|- ( ( 2 e. ZZ /\ ( ( 2 x. n ) + 1 ) e. ZZ /\ 2 <_ ( ( 2 x. n ) + 1 ) ) -> ( n e. NN0 -> 0 < n ) ) |
32 |
4 31
|
sylbi |
|- ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> 0 < n ) ) |
33 |
32
|
imp |
|- ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> 0 < n ) |
34 |
|
elnnz |
|- ( n e. NN <-> ( n e. ZZ /\ 0 < n ) ) |
35 |
3 33 34
|
sylanbrc |
|- ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> n e. NN ) |
36 |
35
|
ex |
|- ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> n e. NN ) ) |
37 |
1 36
|
syl6bir |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( N e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> n e. NN ) ) ) |
38 |
37
|
com13 |
|- ( n e. NN0 -> ( N e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN ) ) ) |
39 |
38
|
impcom |
|- ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN ) ) |
40 |
39
|
pm4.71rd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
41 |
40
|
bicomd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
42 |
41
|
rexbidva |
|- ( N e. ( ZZ>= ` 2 ) -> ( E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
43 |
|
nnssnn0 |
|- NN C_ NN0 |
44 |
|
rexss |
|- ( NN C_ NN0 -> ( E. n e. NN ( ( 2 x. n ) + 1 ) = N <-> E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
45 |
43 44
|
mp1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( E. n e. NN ( ( 2 x. n ) + 1 ) = N <-> E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
46 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
47 |
|
oddnn02np1 |
|- ( N e. NN0 -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
48 |
46 47
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
49 |
42 45 48
|
3bitr4rd |
|- ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN ( ( 2 x. n ) + 1 ) = N ) ) |