| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> N e. ZZ ) | 
						
							| 2 | 1 | zcnd |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> N e. CC ) | 
						
							| 3 |  | 1cnd |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> 1 e. CC ) | 
						
							| 4 |  | 2cnd |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> 2 e. CC ) | 
						
							| 5 |  | simpr |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> n e. ZZ ) | 
						
							| 6 | 5 | zcnd |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> n e. CC ) | 
						
							| 7 | 4 6 | mulcld |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. CC ) | 
						
							| 8 | 2 3 7 | subadd2d |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 9 |  | eqcom |  |-  ( ( N - 1 ) = ( 2 x. n ) <-> ( 2 x. n ) = ( N - 1 ) ) | 
						
							| 10 | 4 6 | mulcomd |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) = ( n x. 2 ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( ( 2 x. n ) = ( N - 1 ) <-> ( n x. 2 ) = ( N - 1 ) ) ) | 
						
							| 12 | 9 11 | bitrid |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( n x. 2 ) = ( N - 1 ) ) ) | 
						
							| 13 | 8 12 | bitr3d |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n x. 2 ) = ( N - 1 ) ) ) | 
						
							| 14 | 13 | rexbidva |  |-  ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) | 
						
							| 15 |  | odd2np1 |  |-  ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 16 |  | 2z |  |-  2 e. ZZ | 
						
							| 17 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 18 |  | divides |  |-  ( ( 2 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) | 
						
							| 19 | 16 17 18 | sylancr |  |-  ( N e. ZZ -> ( 2 || ( N - 1 ) <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) | 
						
							| 20 | 14 15 19 | 3bitr4d |  |-  ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |