Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> N e. ZZ ) |
2 |
1
|
zcnd |
|- ( ( N e. ZZ /\ n e. ZZ ) -> N e. CC ) |
3 |
|
1cnd |
|- ( ( N e. ZZ /\ n e. ZZ ) -> 1 e. CC ) |
4 |
|
2cnd |
|- ( ( N e. ZZ /\ n e. ZZ ) -> 2 e. CC ) |
5 |
|
simpr |
|- ( ( N e. ZZ /\ n e. ZZ ) -> n e. ZZ ) |
6 |
5
|
zcnd |
|- ( ( N e. ZZ /\ n e. ZZ ) -> n e. CC ) |
7 |
4 6
|
mulcld |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. CC ) |
8 |
2 3 7
|
subadd2d |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
9 |
|
eqcom |
|- ( ( N - 1 ) = ( 2 x. n ) <-> ( 2 x. n ) = ( N - 1 ) ) |
10 |
4 6
|
mulcomd |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) = ( n x. 2 ) ) |
11 |
10
|
eqeq1d |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( 2 x. n ) = ( N - 1 ) <-> ( n x. 2 ) = ( N - 1 ) ) ) |
12 |
9 11
|
syl5bb |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( n x. 2 ) = ( N - 1 ) ) ) |
13 |
8 12
|
bitr3d |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n x. 2 ) = ( N - 1 ) ) ) |
14 |
13
|
rexbidva |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) |
15 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
16 |
|
2z |
|- 2 e. ZZ |
17 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
18 |
|
divides |
|- ( ( 2 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) |
19 |
16 17 18
|
sylancr |
|- ( N e. ZZ -> ( 2 || ( N - 1 ) <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) |
20 |
14 15 19
|
3bitr4d |
|- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |