Description: The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | oddm1eveni | |- ( Z e. Odd -> ( Z - 1 ) e. Even ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddz | |- ( Z e. Odd -> Z e. ZZ ) |
|
2 | peano2zm | |- ( Z e. ZZ -> ( Z - 1 ) e. ZZ ) |
|
3 | 1 2 | syl | |- ( Z e. Odd -> ( Z - 1 ) e. ZZ ) |
4 | oddm1div2z | |- ( Z e. Odd -> ( ( Z - 1 ) / 2 ) e. ZZ ) |
|
5 | iseven | |- ( ( Z - 1 ) e. Even <-> ( ( Z - 1 ) e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) ) |
|
6 | 3 4 5 | sylanbrc | |- ( Z e. Odd -> ( Z - 1 ) e. Even ) |