Metamath Proof Explorer


Theorem oddn2prm

Description: A prime not equal to 2 is odd. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion oddn2prm
|- ( N e. ( Prime \ { 2 } ) -> -. 2 || N )

Proof

Step Hyp Ref Expression
1 nnoddn2prm
 |-  ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) )
2 1 simprd
 |-  ( N e. ( Prime \ { 2 } ) -> -. 2 || N )