Metamath Proof Explorer


Theorem oddp1d2

Description: An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo and zeo2 . (Contributed by AV, 22-Jun-2021)

Ref Expression
Assertion oddp1d2
|- ( N e. ZZ -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) )

Proof

Step Hyp Ref Expression
1 oddp1even
 |-  ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N + 1 ) ) )
2 2z
 |-  2 e. ZZ
3 2ne0
 |-  2 =/= 0
4 peano2z
 |-  ( N e. ZZ -> ( N + 1 ) e. ZZ )
5 dvdsval2
 |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( N + 1 ) e. ZZ ) -> ( 2 || ( N + 1 ) <-> ( ( N + 1 ) / 2 ) e. ZZ ) )
6 2 3 4 5 mp3an12i
 |-  ( N e. ZZ -> ( 2 || ( N + 1 ) <-> ( ( N + 1 ) / 2 ) e. ZZ ) )
7 1 6 bitrd
 |-  ( N e. ZZ -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) )