Step |
Hyp |
Ref |
Expression |
1 |
|
oddm1even |
|- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
4 |
|
dvdsadd |
|- ( ( 2 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> 2 || ( 2 + ( N - 1 ) ) ) ) |
5 |
2 3 4
|
sylancr |
|- ( N e. ZZ -> ( 2 || ( N - 1 ) <-> 2 || ( 2 + ( N - 1 ) ) ) ) |
6 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
7 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
8 |
|
1cnd |
|- ( N e. ZZ -> 1 e. CC ) |
9 |
6 7 8
|
addsub12d |
|- ( N e. ZZ -> ( 2 + ( N - 1 ) ) = ( N + ( 2 - 1 ) ) ) |
10 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
11 |
10
|
oveq2i |
|- ( N + ( 2 - 1 ) ) = ( N + 1 ) |
12 |
9 11
|
eqtrdi |
|- ( N e. ZZ -> ( 2 + ( N - 1 ) ) = ( N + 1 ) ) |
13 |
12
|
breq2d |
|- ( N e. ZZ -> ( 2 || ( 2 + ( N - 1 ) ) <-> 2 || ( N + 1 ) ) ) |
14 |
1 5 13
|
3bitrd |
|- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N + 1 ) ) ) |