| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|- ( N e. ( Prime \ { 2 } ) -> N e. Prime ) |
| 2 |
|
prmz |
|- ( N e. Prime -> N e. ZZ ) |
| 3 |
1 2
|
syl |
|- ( N e. ( Prime \ { 2 } ) -> N e. ZZ ) |
| 4 |
|
eldifsni |
|- ( N e. ( Prime \ { 2 } ) -> N =/= 2 ) |
| 5 |
4
|
necomd |
|- ( N e. ( Prime \ { 2 } ) -> 2 =/= N ) |
| 6 |
5
|
neneqd |
|- ( N e. ( Prime \ { 2 } ) -> -. 2 = N ) |
| 7 |
|
2z |
|- 2 e. ZZ |
| 8 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 9 |
7 8
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 10 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. Prime ) -> ( 2 || N <-> 2 = N ) ) |
| 11 |
9 1 10
|
sylancr |
|- ( N e. ( Prime \ { 2 } ) -> ( 2 || N <-> 2 = N ) ) |
| 12 |
6 11
|
mtbird |
|- ( N e. ( Prime \ { 2 } ) -> -. 2 || N ) |
| 13 |
|
1z |
|- 1 e. ZZ |
| 14 |
|
n2dvds1 |
|- -. 2 || 1 |
| 15 |
|
omoe |
|- ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) |
| 16 |
13 14 15
|
mpanr12 |
|- ( ( N e. ZZ /\ -. 2 || N ) -> 2 || ( N - 1 ) ) |
| 17 |
3 12 16
|
syl2anc |
|- ( N e. ( Prime \ { 2 } ) -> 2 || ( N - 1 ) ) |
| 18 |
|
prmnn |
|- ( N e. Prime -> N e. NN ) |
| 19 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 20 |
1 18 19
|
3syl |
|- ( N e. ( Prime \ { 2 } ) -> ( N - 1 ) e. NN0 ) |
| 21 |
|
nn0z |
|- ( ( N - 1 ) e. NN0 -> ( N - 1 ) e. ZZ ) |
| 22 |
|
evend2 |
|- ( ( N - 1 ) e. ZZ -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 23 |
20 21 22
|
3syl |
|- ( N e. ( Prime \ { 2 } ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 24 |
17 23
|
mpbid |
|- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
| 25 |
|
prmuz2 |
|- ( N e. Prime -> N e. ( ZZ>= ` 2 ) ) |
| 26 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
| 27 |
|
nngt0 |
|- ( ( N - 1 ) e. NN -> 0 < ( N - 1 ) ) |
| 28 |
|
nnre |
|- ( ( N - 1 ) e. NN -> ( N - 1 ) e. RR ) |
| 29 |
|
2rp |
|- 2 e. RR+ |
| 30 |
29
|
a1i |
|- ( ( N - 1 ) e. NN -> 2 e. RR+ ) |
| 31 |
28 30
|
gt0divd |
|- ( ( N - 1 ) e. NN -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) ) |
| 32 |
27 31
|
mpbid |
|- ( ( N - 1 ) e. NN -> 0 < ( ( N - 1 ) / 2 ) ) |
| 33 |
1 25 26 32
|
4syl |
|- ( N e. ( Prime \ { 2 } ) -> 0 < ( ( N - 1 ) / 2 ) ) |
| 34 |
|
elnnz |
|- ( ( ( N - 1 ) / 2 ) e. NN <-> ( ( ( N - 1 ) / 2 ) e. ZZ /\ 0 < ( ( N - 1 ) / 2 ) ) ) |
| 35 |
24 33 34
|
sylanbrc |
|- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) |