Metamath Proof Explorer


Theorem oddprmdvds

Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021)

Ref Expression
Assertion oddprmdvds
|- ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K )

Proof

Step Hyp Ref Expression
1 2prm
 |-  2 e. Prime
2 pcndvds2
 |-  ( ( 2 e. Prime /\ K e. NN ) -> -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) )
3 1 2 mpan
 |-  ( K e. NN -> -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) )
4 pcdvds
 |-  ( ( 2 e. Prime /\ K e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) || K )
5 1 4 mpan
 |-  ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) || K )
6 2nn
 |-  2 e. NN
7 6 a1i
 |-  ( K e. NN -> 2 e. NN )
8 1 a1i
 |-  ( K e. NN -> 2 e. Prime )
9 id
 |-  ( K e. NN -> K e. NN )
10 8 9 pccld
 |-  ( K e. NN -> ( 2 pCnt K ) e. NN0 )
11 7 10 nnexpcld
 |-  ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. NN )
12 nndivdvds
 |-  ( ( K e. NN /\ ( 2 ^ ( 2 pCnt K ) ) e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) )
13 11 12 mpdan
 |-  ( K e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) )
14 13 adantr
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) )
15 elnn1uz2
 |-  ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN <-> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 \/ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) ) )
16 nncn
 |-  ( K e. NN -> K e. CC )
17 nncn
 |-  ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. CC )
18 nnne0
 |-  ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( 2 ^ ( 2 pCnt K ) ) =/= 0 )
19 17 18 jca
 |-  ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) )
20 11 19 syl
 |-  ( K e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) )
21 3anass
 |-  ( ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) <-> ( K e. CC /\ ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) )
22 16 20 21 sylanbrc
 |-  ( K e. NN -> ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) )
23 22 adantr
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) )
24 diveq1
 |-  ( ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 <-> K = ( 2 ^ ( 2 pCnt K ) ) ) )
25 23 24 syl
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 <-> K = ( 2 ^ ( 2 pCnt K ) ) ) )
26 10 adantr
 |-  ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> ( 2 pCnt K ) e. NN0 )
27 oveq2
 |-  ( n = ( 2 pCnt K ) -> ( 2 ^ n ) = ( 2 ^ ( 2 pCnt K ) ) )
28 27 eqeq2d
 |-  ( n = ( 2 pCnt K ) -> ( K = ( 2 ^ n ) <-> K = ( 2 ^ ( 2 pCnt K ) ) ) )
29 28 adantl
 |-  ( ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) /\ n = ( 2 pCnt K ) ) -> ( K = ( 2 ^ n ) <-> K = ( 2 ^ ( 2 pCnt K ) ) ) )
30 simpr
 |-  ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> K = ( 2 ^ ( 2 pCnt K ) ) )
31 26 29 30 rspcedvd
 |-  ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> E. n e. NN0 K = ( 2 ^ n ) )
32 31 ex
 |-  ( K e. NN -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) )
33 pm2.24
 |-  ( E. n e. NN0 K = ( 2 ^ n ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) )
34 32 33 syl6
 |-  ( K e. NN -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
35 34 adantr
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
36 25 35 sylbid
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
37 36 com12
 |-  ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
38 exprmfct
 |-  ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) -> E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) )
39 breq1
 |-  ( q = 2 -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) )
40 39 biimpcd
 |-  ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q = 2 -> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) )
41 40 adantl
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( q = 2 -> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) )
42 41 necon3bd
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> q =/= 2 ) )
43 42 ex
 |-  ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> q =/= 2 ) ) )
44 prmnn
 |-  ( q e. Prime -> q e. NN )
45 5 13 mpbid
 |-  ( K e. NN -> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN )
46 nndivides
 |-  ( ( q e. NN /\ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) )
47 44 45 46 syl2anr
 |-  ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) )
48 eqcom
 |-  ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) )
49 16 ad2antrr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> K e. CC )
50 simpr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> m e. NN )
51 44 ad2antlr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. NN )
52 50 51 nnmulcld
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( m x. q ) e. NN )
53 52 nncnd
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( m x. q ) e. CC )
54 11 ad2antrr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. NN )
55 54 19 syl
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) )
56 divmul
 |-  ( ( K e. CC /\ ( m x. q ) e. CC /\ ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) )
57 49 53 55 56 syl3anc
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) )
58 48 57 syl5bb
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) )
59 simpr
 |-  ( ( K e. NN /\ q e. Prime ) -> q e. Prime )
60 59 adantr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. Prime )
61 60 anim1i
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( q e. Prime /\ q =/= 2 ) )
62 eldifsn
 |-  ( q e. ( Prime \ { 2 } ) <-> ( q e. Prime /\ q =/= 2 ) )
63 61 62 sylibr
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q e. ( Prime \ { 2 } ) )
64 63 adantr
 |-  ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q e. ( Prime \ { 2 } ) )
65 breq1
 |-  ( p = q -> ( p || K <-> q || K ) )
66 65 adantl
 |-  ( ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) /\ p = q ) -> ( p || K <-> q || K ) )
67 54 50 nnmulcld
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. NN )
68 67 nnzd
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ )
69 44 nnzd
 |-  ( q e. Prime -> q e. ZZ )
70 69 ad2antlr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. ZZ )
71 68 70 jca
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) )
72 71 adantr
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) )
73 dvdsmul2
 |-  ( ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) -> q || ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) )
74 72 73 syl
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q || ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) )
75 2nn0
 |-  2 e. NN0
76 75 a1i
 |-  ( K e. NN -> 2 e. NN0 )
77 76 10 nn0expcld
 |-  ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. NN0 )
78 77 ad2antrr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. NN0 )
79 78 nn0cnd
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. CC )
80 nncn
 |-  ( m e. NN -> m e. CC )
81 80 adantl
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> m e. CC )
82 44 nncnd
 |-  ( q e. Prime -> q e. CC )
83 82 ad2antlr
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. CC )
84 79 81 83 3jca
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) )
85 84 adantr
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) )
86 mulass
 |-  ( ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) = ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) )
87 85 86 syl
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) = ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) )
88 74 87 breqtrd
 |-  ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) )
89 88 adantr
 |-  ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) )
90 breq2
 |-  ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) <-> q || K ) )
91 90 adantl
 |-  ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> ( q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) <-> q || K ) )
92 89 91 mpbid
 |-  ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q || K )
93 64 66 92 rspcedvd
 |-  ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> E. p e. ( Prime \ { 2 } ) p || K )
94 93 a1d
 |-  ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) )
95 94 exp31
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( q =/= 2 -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
96 95 com23
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
97 58 96 sylbid
 |-  ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
98 97 rexlimdva
 |-  ( ( K e. NN /\ q e. Prime ) -> ( E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
99 47 98 sylbid
 |-  ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
100 43 99 syldd
 |-  ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
101 100 rexlimdva
 |-  ( K e. NN -> ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
102 101 com12
 |-  ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( K e. NN -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
103 102 impd
 |-  ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
104 38 103 syl
 |-  ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
105 37 104 jaoi
 |-  ( ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 \/ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
106 15 105 sylbi
 |-  ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
107 106 com12
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
108 14 107 sylbid
 |-  ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) )
109 108 ex
 |-  ( K e. NN -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) )
110 3 5 109 mp2d
 |-  ( K e. NN -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) )
111 110 imp
 |-  ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K )