Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
2 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
3 |
|
eluz2 |
|- ( P e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) ) |
4 |
|
zre |
|- ( 2 e. ZZ -> 2 e. RR ) |
5 |
|
zre |
|- ( P e. ZZ -> P e. RR ) |
6 |
|
ltlen |
|- ( ( 2 e. RR /\ P e. RR ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) |
8 |
7
|
biimprd |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 <_ P /\ P =/= 2 ) -> 2 < P ) ) |
9 |
8
|
exp4b |
|- ( 2 e. ZZ -> ( P e. ZZ -> ( 2 <_ P -> ( P =/= 2 -> 2 < P ) ) ) ) |
10 |
9
|
3imp |
|- ( ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) -> ( P =/= 2 -> 2 < P ) ) |
11 |
3 10
|
sylbi |
|- ( P e. ( ZZ>= ` 2 ) -> ( P =/= 2 -> 2 < P ) ) |
12 |
2 11
|
syl |
|- ( P e. Prime -> ( P =/= 2 -> 2 < P ) ) |
13 |
12
|
imp |
|- ( ( P e. Prime /\ P =/= 2 ) -> 2 < P ) |
14 |
1 13
|
sylbi |
|- ( P e. ( Prime \ { 2 } ) -> 2 < P ) |