Metamath Proof Explorer


Theorem oddprmgt2

Description: An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021)

Ref Expression
Assertion oddprmgt2
|- ( P e. ( Prime \ { 2 } ) -> 2 < P )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) )
2 prmuz2
 |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) )
3 eluz2
 |-  ( P e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) )
4 zre
 |-  ( 2 e. ZZ -> 2 e. RR )
5 zre
 |-  ( P e. ZZ -> P e. RR )
6 ltlen
 |-  ( ( 2 e. RR /\ P e. RR ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) )
7 4 5 6 syl2an
 |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) )
8 7 biimprd
 |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 <_ P /\ P =/= 2 ) -> 2 < P ) )
9 8 exp4b
 |-  ( 2 e. ZZ -> ( P e. ZZ -> ( 2 <_ P -> ( P =/= 2 -> 2 < P ) ) ) )
10 9 3imp
 |-  ( ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) -> ( P =/= 2 -> 2 < P ) )
11 3 10 sylbi
 |-  ( P e. ( ZZ>= ` 2 ) -> ( P =/= 2 -> 2 < P ) )
12 2 11 syl
 |-  ( P e. Prime -> ( P =/= 2 -> 2 < P ) )
13 12 imp
 |-  ( ( P e. Prime /\ P =/= 2 ) -> 2 < P )
14 1 13 sylbi
 |-  ( P e. ( Prime \ { 2 } ) -> 2 < P )