Metamath Proof Explorer


Theorem oddprmne2

Description: Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021)

Ref Expression
Assertion oddprmne2
|- ( ( P e. Prime /\ P e. Odd ) <-> P e. ( Prime \ { 2 } ) )

Proof

Step Hyp Ref Expression
1 prmz
 |-  ( P e. Prime -> P e. ZZ )
2 zeo2ALTV
 |-  ( P e. ZZ -> ( P e. Even <-> -. P e. Odd ) )
3 1 2 syl
 |-  ( P e. Prime -> ( P e. Even <-> -. P e. Odd ) )
4 evenprm2
 |-  ( P e. Prime -> ( P e. Even <-> P = 2 ) )
5 3 4 bitr3d
 |-  ( P e. Prime -> ( -. P e. Odd <-> P = 2 ) )
6 nne
 |-  ( -. P =/= 2 <-> P = 2 )
7 5 6 bitr4di
 |-  ( P e. Prime -> ( -. P e. Odd <-> -. P =/= 2 ) )
8 7 con4bid
 |-  ( P e. Prime -> ( P e. Odd <-> P =/= 2 ) )
9 8 pm5.32i
 |-  ( ( P e. Prime /\ P e. Odd ) <-> ( P e. Prime /\ P =/= 2 ) )
10 eldifsn
 |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) )
11 9 10 bitr4i
 |-  ( ( P e. Prime /\ P e. Odd ) <-> P e. ( Prime \ { 2 } ) )