Step |
Hyp |
Ref |
Expression |
1 |
|
oddpwdc.j |
|- J = { z e. NN | -. 2 || z } |
2 |
|
oddpwdc.f |
|- F = ( x e. J , y e. NN0 |-> ( ( 2 ^ y ) x. x ) ) |
3 |
|
2nn |
|- 2 e. NN |
4 |
3
|
a1i |
|- ( ( y e. NN0 /\ x e. J ) -> 2 e. NN ) |
5 |
|
simpl |
|- ( ( y e. NN0 /\ x e. J ) -> y e. NN0 ) |
6 |
4 5
|
nnexpcld |
|- ( ( y e. NN0 /\ x e. J ) -> ( 2 ^ y ) e. NN ) |
7 |
|
ssrab2 |
|- { z e. NN | -. 2 || z } C_ NN |
8 |
1 7
|
eqsstri |
|- J C_ NN |
9 |
|
simpr |
|- ( ( y e. NN0 /\ x e. J ) -> x e. J ) |
10 |
8 9
|
sselid |
|- ( ( y e. NN0 /\ x e. J ) -> x e. NN ) |
11 |
6 10
|
nnmulcld |
|- ( ( y e. NN0 /\ x e. J ) -> ( ( 2 ^ y ) x. x ) e. NN ) |
12 |
11
|
ancoms |
|- ( ( x e. J /\ y e. NN0 ) -> ( ( 2 ^ y ) x. x ) e. NN ) |
13 |
12
|
adantl |
|- ( ( T. /\ ( x e. J /\ y e. NN0 ) ) -> ( ( 2 ^ y ) x. x ) e. NN ) |
14 |
|
id |
|- ( a e. NN -> a e. NN ) |
15 |
3
|
a1i |
|- ( a e. NN -> 2 e. NN ) |
16 |
|
nn0ssre |
|- NN0 C_ RR |
17 |
|
ltso |
|- < Or RR |
18 |
|
soss |
|- ( NN0 C_ RR -> ( < Or RR -> < Or NN0 ) ) |
19 |
16 17 18
|
mp2 |
|- < Or NN0 |
20 |
19
|
a1i |
|- ( a e. NN -> < Or NN0 ) |
21 |
|
0zd |
|- ( a e. NN -> 0 e. ZZ ) |
22 |
|
ssrab2 |
|- { k e. NN0 | ( 2 ^ k ) || a } C_ NN0 |
23 |
22
|
a1i |
|- ( a e. NN -> { k e. NN0 | ( 2 ^ k ) || a } C_ NN0 ) |
24 |
|
nnz |
|- ( a e. NN -> a e. ZZ ) |
25 |
|
oveq2 |
|- ( k = n -> ( 2 ^ k ) = ( 2 ^ n ) ) |
26 |
25
|
breq1d |
|- ( k = n -> ( ( 2 ^ k ) || a <-> ( 2 ^ n ) || a ) ) |
27 |
26
|
elrab |
|- ( n e. { k e. NN0 | ( 2 ^ k ) || a } <-> ( n e. NN0 /\ ( 2 ^ n ) || a ) ) |
28 |
|
simprl |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> n e. NN0 ) |
29 |
28
|
nn0red |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> n e. RR ) |
30 |
3
|
a1i |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> 2 e. NN ) |
31 |
30 28
|
nnexpcld |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> ( 2 ^ n ) e. NN ) |
32 |
31
|
nnred |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> ( 2 ^ n ) e. RR ) |
33 |
|
simpl |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> a e. NN ) |
34 |
33
|
nnred |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> a e. RR ) |
35 |
|
2re |
|- 2 e. RR |
36 |
35
|
leidi |
|- 2 <_ 2 |
37 |
|
nexple |
|- ( ( n e. NN0 /\ 2 e. RR /\ 2 <_ 2 ) -> n <_ ( 2 ^ n ) ) |
38 |
35 36 37
|
mp3an23 |
|- ( n e. NN0 -> n <_ ( 2 ^ n ) ) |
39 |
38
|
ad2antrl |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> n <_ ( 2 ^ n ) ) |
40 |
31
|
nnzd |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> ( 2 ^ n ) e. ZZ ) |
41 |
|
simprr |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> ( 2 ^ n ) || a ) |
42 |
|
dvdsle |
|- ( ( ( 2 ^ n ) e. ZZ /\ a e. NN ) -> ( ( 2 ^ n ) || a -> ( 2 ^ n ) <_ a ) ) |
43 |
42
|
imp |
|- ( ( ( ( 2 ^ n ) e. ZZ /\ a e. NN ) /\ ( 2 ^ n ) || a ) -> ( 2 ^ n ) <_ a ) |
44 |
40 33 41 43
|
syl21anc |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> ( 2 ^ n ) <_ a ) |
45 |
29 32 34 39 44
|
letrd |
|- ( ( a e. NN /\ ( n e. NN0 /\ ( 2 ^ n ) || a ) ) -> n <_ a ) |
46 |
27 45
|
sylan2b |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> n <_ a ) |
47 |
46
|
ralrimiva |
|- ( a e. NN -> A. n e. { k e. NN0 | ( 2 ^ k ) || a } n <_ a ) |
48 |
|
brralrspcev |
|- ( ( a e. ZZ /\ A. n e. { k e. NN0 | ( 2 ^ k ) || a } n <_ a ) -> E. m e. ZZ A. n e. { k e. NN0 | ( 2 ^ k ) || a } n <_ m ) |
49 |
24 47 48
|
syl2anc |
|- ( a e. NN -> E. m e. ZZ A. n e. { k e. NN0 | ( 2 ^ k ) || a } n <_ m ) |
50 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
51 |
50
|
uzsupss |
|- ( ( 0 e. ZZ /\ { k e. NN0 | ( 2 ^ k ) || a } C_ NN0 /\ E. m e. ZZ A. n e. { k e. NN0 | ( 2 ^ k ) || a } n <_ m ) -> E. m e. NN0 ( A. n e. { k e. NN0 | ( 2 ^ k ) || a } -. m < n /\ A. n e. NN0 ( n < m -> E. o e. { k e. NN0 | ( 2 ^ k ) || a } n < o ) ) ) |
52 |
21 23 49 51
|
syl3anc |
|- ( a e. NN -> E. m e. NN0 ( A. n e. { k e. NN0 | ( 2 ^ k ) || a } -. m < n /\ A. n e. NN0 ( n < m -> E. o e. { k e. NN0 | ( 2 ^ k ) || a } n < o ) ) ) |
53 |
20 52
|
supcl |
|- ( a e. NN -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 ) |
54 |
15 53
|
nnexpcld |
|- ( a e. NN -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. NN ) |
55 |
|
fzfi |
|- ( 0 ... a ) e. Fin |
56 |
|
0zd |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> 0 e. ZZ ) |
57 |
24
|
adantr |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> a e. ZZ ) |
58 |
27 28
|
sylan2b |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> n e. NN0 ) |
59 |
58
|
nn0zd |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> n e. ZZ ) |
60 |
58
|
nn0ge0d |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> 0 <_ n ) |
61 |
56 57 59 60 46
|
elfzd |
|- ( ( a e. NN /\ n e. { k e. NN0 | ( 2 ^ k ) || a } ) -> n e. ( 0 ... a ) ) |
62 |
61
|
ex |
|- ( a e. NN -> ( n e. { k e. NN0 | ( 2 ^ k ) || a } -> n e. ( 0 ... a ) ) ) |
63 |
62
|
ssrdv |
|- ( a e. NN -> { k e. NN0 | ( 2 ^ k ) || a } C_ ( 0 ... a ) ) |
64 |
|
ssfi |
|- ( ( ( 0 ... a ) e. Fin /\ { k e. NN0 | ( 2 ^ k ) || a } C_ ( 0 ... a ) ) -> { k e. NN0 | ( 2 ^ k ) || a } e. Fin ) |
65 |
55 63 64
|
sylancr |
|- ( a e. NN -> { k e. NN0 | ( 2 ^ k ) || a } e. Fin ) |
66 |
|
0nn0 |
|- 0 e. NN0 |
67 |
66
|
a1i |
|- ( a e. NN -> 0 e. NN0 ) |
68 |
|
2cn |
|- 2 e. CC |
69 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
70 |
68 69
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
71 |
|
1dvds |
|- ( a e. ZZ -> 1 || a ) |
72 |
24 71
|
syl |
|- ( a e. NN -> 1 || a ) |
73 |
70 72
|
eqbrtrid |
|- ( a e. NN -> ( 2 ^ 0 ) || a ) |
74 |
|
oveq2 |
|- ( k = 0 -> ( 2 ^ k ) = ( 2 ^ 0 ) ) |
75 |
74
|
breq1d |
|- ( k = 0 -> ( ( 2 ^ k ) || a <-> ( 2 ^ 0 ) || a ) ) |
76 |
75
|
elrab |
|- ( 0 e. { k e. NN0 | ( 2 ^ k ) || a } <-> ( 0 e. NN0 /\ ( 2 ^ 0 ) || a ) ) |
77 |
67 73 76
|
sylanbrc |
|- ( a e. NN -> 0 e. { k e. NN0 | ( 2 ^ k ) || a } ) |
78 |
77
|
ne0d |
|- ( a e. NN -> { k e. NN0 | ( 2 ^ k ) || a } =/= (/) ) |
79 |
|
fisupcl |
|- ( ( < Or NN0 /\ ( { k e. NN0 | ( 2 ^ k ) || a } e. Fin /\ { k e. NN0 | ( 2 ^ k ) || a } =/= (/) /\ { k e. NN0 | ( 2 ^ k ) || a } C_ NN0 ) ) -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. { k e. NN0 | ( 2 ^ k ) || a } ) |
80 |
20 65 78 23 79
|
syl13anc |
|- ( a e. NN -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. { k e. NN0 | ( 2 ^ k ) || a } ) |
81 |
|
oveq2 |
|- ( k = l -> ( 2 ^ k ) = ( 2 ^ l ) ) |
82 |
81
|
breq1d |
|- ( k = l -> ( ( 2 ^ k ) || a <-> ( 2 ^ l ) || a ) ) |
83 |
82
|
cbvrabv |
|- { k e. NN0 | ( 2 ^ k ) || a } = { l e. NN0 | ( 2 ^ l ) || a } |
84 |
80 83
|
eleqtrdi |
|- ( a e. NN -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. { l e. NN0 | ( 2 ^ l ) || a } ) |
85 |
|
oveq2 |
|- ( l = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) -> ( 2 ^ l ) = ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) |
86 |
85
|
breq1d |
|- ( l = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) -> ( ( 2 ^ l ) || a <-> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) || a ) ) |
87 |
86
|
elrab |
|- ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. { l e. NN0 | ( 2 ^ l ) || a } <-> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 /\ ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) || a ) ) |
88 |
84 87
|
sylib |
|- ( a e. NN -> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 /\ ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) || a ) ) |
89 |
88
|
simprd |
|- ( a e. NN -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) || a ) |
90 |
|
nndivdvds |
|- ( ( a e. NN /\ ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. NN ) -> ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) || a <-> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. NN ) ) |
91 |
90
|
biimpa |
|- ( ( ( a e. NN /\ ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. NN ) /\ ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) || a ) -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. NN ) |
92 |
14 54 89 91
|
syl21anc |
|- ( a e. NN -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. NN ) |
93 |
|
1nn0 |
|- 1 e. NN0 |
94 |
93
|
a1i |
|- ( a e. NN -> 1 e. NN0 ) |
95 |
53 94
|
nn0addcld |
|- ( a e. NN -> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. NN0 ) |
96 |
53
|
nn0red |
|- ( a e. NN -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. RR ) |
97 |
96
|
ltp1d |
|- ( a e. NN -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) < ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) |
98 |
20 52
|
supub |
|- ( a e. NN -> ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. { k e. NN0 | ( 2 ^ k ) || a } -> -. sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) < ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) ) |
99 |
97 98
|
mt2d |
|- ( a e. NN -> -. ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. { k e. NN0 | ( 2 ^ k ) || a } ) |
100 |
83
|
eleq2i |
|- ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. { k e. NN0 | ( 2 ^ k ) || a } <-> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. { l e. NN0 | ( 2 ^ l ) || a } ) |
101 |
99 100
|
sylnib |
|- ( a e. NN -> -. ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. { l e. NN0 | ( 2 ^ l ) || a } ) |
102 |
|
oveq2 |
|- ( l = ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) -> ( 2 ^ l ) = ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) ) |
103 |
102
|
breq1d |
|- ( l = ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) -> ( ( 2 ^ l ) || a <-> ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) ) |
104 |
103
|
elrab |
|- ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. { l e. NN0 | ( 2 ^ l ) || a } <-> ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. NN0 /\ ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) ) |
105 |
101 104
|
sylnib |
|- ( a e. NN -> -. ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. NN0 /\ ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) ) |
106 |
|
imnan |
|- ( ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. NN0 -> -. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) <-> -. ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. NN0 /\ ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) ) |
107 |
105 106
|
sylibr |
|- ( a e. NN -> ( ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) e. NN0 -> -. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) ) |
108 |
95 107
|
mpd |
|- ( a e. NN -> -. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a ) |
109 |
|
expp1 |
|- ( ( 2 e. CC /\ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 ) -> ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) = ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) ) |
110 |
68 53 109
|
sylancr |
|- ( a e. NN -> ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) = ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) ) |
111 |
110
|
breq1d |
|- ( a e. NN -> ( ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) + 1 ) ) || a <-> ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || a ) ) |
112 |
108 111
|
mtbid |
|- ( a e. NN -> -. ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || a ) |
113 |
|
nncn |
|- ( a e. NN -> a e. CC ) |
114 |
54
|
nncnd |
|- ( a e. NN -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. CC ) |
115 |
54
|
nnne0d |
|- ( a e. NN -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) =/= 0 ) |
116 |
113 114 115
|
divcan2d |
|- ( a e. NN -> ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) = a ) |
117 |
116
|
eqcomd |
|- ( a e. NN -> a = ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
118 |
117
|
breq2d |
|- ( a e. NN -> ( ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || a <-> ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) ) |
119 |
15
|
nnzd |
|- ( a e. NN -> 2 e. ZZ ) |
120 |
92
|
nnzd |
|- ( a e. NN -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. ZZ ) |
121 |
54
|
nnzd |
|- ( a e. NN -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. ZZ ) |
122 |
|
dvdscmulr |
|- ( ( 2 e. ZZ /\ ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. ZZ /\ ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. ZZ /\ ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) =/= 0 ) ) -> ( ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) <-> 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
123 |
119 120 121 115 122
|
syl112anc |
|- ( a e. NN -> ( ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) <-> 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
124 |
118 123
|
bitrd |
|- ( a e. NN -> ( ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. 2 ) || a <-> 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
125 |
112 124
|
mtbid |
|- ( a e. NN -> -. 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) |
126 |
|
breq2 |
|- ( z = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> ( 2 || z <-> 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
127 |
126
|
notbid |
|- ( z = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> ( -. 2 || z <-> -. 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
128 |
127 1
|
elrab2 |
|- ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. J <-> ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. NN /\ -. 2 || ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
129 |
92 125 128
|
sylanbrc |
|- ( a e. NN -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. J ) |
130 |
129 53
|
jca |
|- ( a e. NN -> ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. J /\ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 ) ) |
131 |
130
|
adantl |
|- ( ( T. /\ a e. NN ) -> ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. J /\ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 ) ) |
132 |
|
simpr |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> a = ( ( 2 ^ y ) x. x ) ) |
133 |
3
|
a1i |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> 2 e. NN ) |
134 |
|
simplr |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> y e. NN0 ) |
135 |
133 134
|
nnexpcld |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( 2 ^ y ) e. NN ) |
136 |
8
|
sseli |
|- ( x e. J -> x e. NN ) |
137 |
136
|
ad2antrr |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> x e. NN ) |
138 |
135 137
|
nnmulcld |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( ( 2 ^ y ) x. x ) e. NN ) |
139 |
132 138
|
eqeltrd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> a e. NN ) |
140 |
|
simplll |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x e. J ) |
141 |
|
breq2 |
|- ( z = x -> ( 2 || z <-> 2 || x ) ) |
142 |
141
|
notbid |
|- ( z = x -> ( -. 2 || z <-> -. 2 || x ) ) |
143 |
142 1
|
elrab2 |
|- ( x e. J <-> ( x e. NN /\ -. 2 || x ) ) |
144 |
143
|
simprbi |
|- ( x e. J -> -. 2 || x ) |
145 |
|
2z |
|- 2 e. ZZ |
146 |
134
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> y e. NN0 ) |
147 |
146
|
nn0zd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> y e. ZZ ) |
148 |
19
|
a1i |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> < Or NN0 ) |
149 |
139 52
|
syl |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> E. m e. NN0 ( A. n e. { k e. NN0 | ( 2 ^ k ) || a } -. m < n /\ A. n e. NN0 ( n < m -> E. o e. { k e. NN0 | ( 2 ^ k ) || a } n < o ) ) ) |
150 |
149
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> E. m e. NN0 ( A. n e. { k e. NN0 | ( 2 ^ k ) || a } -. m < n /\ A. n e. NN0 ( n < m -> E. o e. { k e. NN0 | ( 2 ^ k ) || a } n < o ) ) ) |
151 |
148 150
|
supcl |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 ) |
152 |
151
|
nn0zd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. ZZ ) |
153 |
|
simpr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) |
154 |
|
znnsub |
|- ( ( y e. ZZ /\ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. ZZ ) -> ( y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) <-> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) e. NN ) ) |
155 |
154
|
biimpa |
|- ( ( ( y e. ZZ /\ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. ZZ ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) e. NN ) |
156 |
147 152 153 155
|
syl21anc |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) e. NN ) |
157 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) e. NN ) -> 2 || ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) |
158 |
145 156 157
|
sylancr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> 2 || ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) |
159 |
145
|
a1i |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> 2 e. ZZ ) |
160 |
139 120
|
syl |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. ZZ ) |
161 |
160
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. ZZ ) |
162 |
156
|
nnnn0d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) e. NN0 ) |
163 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) e. NN0 ) -> ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) e. ZZ ) |
164 |
145 162 163
|
sylancr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) e. ZZ ) |
165 |
|
dvdsmultr2 |
|- ( ( 2 e. ZZ /\ ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. ZZ /\ ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) e. ZZ ) -> ( 2 || ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) -> 2 || ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) ) ) |
166 |
159 161 164 165
|
syl3anc |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 || ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) -> 2 || ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) ) ) |
167 |
158 166
|
mpd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> 2 || ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) ) |
168 |
137
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x e. NN ) |
169 |
168
|
nncnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x e. CC ) |
170 |
|
2cnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> 2 e. CC ) |
171 |
170 162
|
expcld |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) e. CC ) |
172 |
139
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a e. NN ) |
173 |
172
|
nncnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a e. CC ) |
174 |
172 114
|
syl |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) e. CC ) |
175 |
|
2ne0 |
|- 2 =/= 0 |
176 |
175
|
a1i |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> 2 =/= 0 ) |
177 |
170 176 152
|
expne0d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) =/= 0 ) |
178 |
173 174 177
|
divcld |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. CC ) |
179 |
171 178
|
mulcld |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) e. CC ) |
180 |
170 146
|
expcld |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ y ) e. CC ) |
181 |
170 176 147
|
expne0d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ y ) =/= 0 ) |
182 |
172 117
|
syl |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a = ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
183 |
|
simplr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a = ( ( 2 ^ y ) x. x ) ) |
184 |
146
|
nn0cnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> y e. CC ) |
185 |
151
|
nn0cnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. CC ) |
186 |
184 185
|
pncan3d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( y + ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) |
187 |
186
|
oveq2d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ ( y + ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) = ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) |
188 |
170 162 146
|
expaddd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ ( y + ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) = ( ( 2 ^ y ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) ) |
189 |
187 188
|
eqtr3d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) = ( ( 2 ^ y ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) ) |
190 |
189
|
oveq1d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) = ( ( ( 2 ^ y ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
191 |
182 183 190
|
3eqtr3d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( 2 ^ y ) x. x ) = ( ( ( 2 ^ y ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
192 |
180 171 178
|
mulassd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( ( 2 ^ y ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) = ( ( 2 ^ y ) x. ( ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) ) |
193 |
191 192
|
eqtrd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( 2 ^ y ) x. x ) = ( ( 2 ^ y ) x. ( ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) ) |
194 |
169 179 180 181 193
|
mulcanad |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x = ( ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
195 |
178 171
|
mulcomd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) = ( ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
196 |
194 195
|
eqtr4d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x = ( ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) x. ( 2 ^ ( sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) - y ) ) ) ) |
197 |
167 196
|
breqtrrd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> 2 || x ) |
198 |
144 197
|
nsyl3 |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> -. x e. J ) |
199 |
140 198
|
pm2.65da |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> -. y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) |
200 |
137
|
nnzd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> x e. ZZ ) |
201 |
135
|
nnzd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( 2 ^ y ) e. ZZ ) |
202 |
139
|
nnzd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> a e. ZZ ) |
203 |
135
|
nncnd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( 2 ^ y ) e. CC ) |
204 |
137
|
nncnd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> x e. CC ) |
205 |
203 204
|
mulcomd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( ( 2 ^ y ) x. x ) = ( x x. ( 2 ^ y ) ) ) |
206 |
132 205
|
eqtr2d |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( x x. ( 2 ^ y ) ) = a ) |
207 |
|
dvds0lem |
|- ( ( ( x e. ZZ /\ ( 2 ^ y ) e. ZZ /\ a e. ZZ ) /\ ( x x. ( 2 ^ y ) ) = a ) -> ( 2 ^ y ) || a ) |
208 |
200 201 202 206 207
|
syl31anc |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( 2 ^ y ) || a ) |
209 |
|
oveq2 |
|- ( k = y -> ( 2 ^ k ) = ( 2 ^ y ) ) |
210 |
209
|
breq1d |
|- ( k = y -> ( ( 2 ^ k ) || a <-> ( 2 ^ y ) || a ) ) |
211 |
210
|
elrab |
|- ( y e. { k e. NN0 | ( 2 ^ k ) || a } <-> ( y e. NN0 /\ ( 2 ^ y ) || a ) ) |
212 |
134 208 211
|
sylanbrc |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> y e. { k e. NN0 | ( 2 ^ k ) || a } ) |
213 |
19
|
a1i |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> < Or NN0 ) |
214 |
213 149
|
supub |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( y e. { k e. NN0 | ( 2 ^ k ) || a } -> -. sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) < y ) ) |
215 |
212 214
|
mpd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> -. sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) < y ) |
216 |
134
|
nn0red |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> y e. RR ) |
217 |
139 96
|
syl |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. RR ) |
218 |
216 217
|
lttri3d |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) <-> ( -. y < sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) /\ -. sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) < y ) ) ) |
219 |
199 215 218
|
mpbir2and |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) |
220 |
|
simplr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a = ( ( 2 ^ y ) x. x ) ) |
221 |
139
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a e. NN ) |
222 |
221
|
nncnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> a e. CC ) |
223 |
137
|
adantr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x e. NN ) |
224 |
223
|
nncnd |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x e. CC ) |
225 |
|
nnexpcl |
|- ( ( 2 e. NN /\ y e. NN0 ) -> ( 2 ^ y ) e. NN ) |
226 |
3 225
|
mpan |
|- ( y e. NN0 -> ( 2 ^ y ) e. NN ) |
227 |
226
|
nncnd |
|- ( y e. NN0 -> ( 2 ^ y ) e. CC ) |
228 |
226
|
nnne0d |
|- ( y e. NN0 -> ( 2 ^ y ) =/= 0 ) |
229 |
227 228
|
jca |
|- ( y e. NN0 -> ( ( 2 ^ y ) e. CC /\ ( 2 ^ y ) =/= 0 ) ) |
230 |
229
|
ad3antlr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( 2 ^ y ) e. CC /\ ( 2 ^ y ) =/= 0 ) ) |
231 |
|
divmul2 |
|- ( ( a e. CC /\ x e. CC /\ ( ( 2 ^ y ) e. CC /\ ( 2 ^ y ) =/= 0 ) ) -> ( ( a / ( 2 ^ y ) ) = x <-> a = ( ( 2 ^ y ) x. x ) ) ) |
232 |
222 224 230 231
|
syl3anc |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( ( a / ( 2 ^ y ) ) = x <-> a = ( ( 2 ^ y ) x. x ) ) ) |
233 |
220 232
|
mpbird |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( a / ( 2 ^ y ) ) = x ) |
234 |
|
simpr |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) |
235 |
234
|
oveq2d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( 2 ^ y ) = ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) |
236 |
235
|
oveq2d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> ( a / ( 2 ^ y ) ) = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) |
237 |
233 236
|
eqtr3d |
|- ( ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) -> x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) |
238 |
237
|
ex |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) -> x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
239 |
219 238
|
jcai |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) /\ x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
240 |
239
|
ancomd |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) |
241 |
139 240
|
jca |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) -> ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) |
242 |
|
simprl |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) |
243 |
129
|
adantr |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) e. J ) |
244 |
242 243
|
eqeltrd |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> x e. J ) |
245 |
|
simprr |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) |
246 |
53
|
adantr |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) e. NN0 ) |
247 |
245 246
|
eqeltrd |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> y e. NN0 ) |
248 |
117
|
adantr |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> a = ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
249 |
245
|
oveq2d |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> ( 2 ^ y ) = ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) |
250 |
249 242
|
oveq12d |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> ( ( 2 ^ y ) x. x ) = ( ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) x. ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
251 |
248 250
|
eqtr4d |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> a = ( ( 2 ^ y ) x. x ) ) |
252 |
244 247 251
|
jca31 |
|- ( ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) -> ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) ) |
253 |
241 252
|
impbii |
|- ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) <-> ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) |
254 |
253
|
a1i |
|- ( T. -> ( ( ( x e. J /\ y e. NN0 ) /\ a = ( ( 2 ^ y ) x. x ) ) <-> ( a e. NN /\ ( x = ( a / ( 2 ^ sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) /\ y = sup ( { k e. NN0 | ( 2 ^ k ) || a } , NN0 , < ) ) ) ) ) |
255 |
2 13 131 254
|
f1od2 |
|- ( T. -> F : ( J X. NN0 ) -1-1-onto-> NN ) |
256 |
255
|
mptru |
|- F : ( J X. NN0 ) -1-1-onto-> NN |