Step |
Hyp |
Ref |
Expression |
1 |
|
pwp1fsum.a |
|- ( ph -> A e. CC ) |
2 |
|
pwp1fsum.n |
|- ( ph -> N e. NN ) |
3 |
|
oddpwp1fsum.n |
|- ( ph -> -. 2 || N ) |
4 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
5 |
|
oddm1even |
|- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
6 |
4 5
|
syl |
|- ( ph -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
7 |
3 6
|
mpbid |
|- ( ph -> 2 || ( N - 1 ) ) |
8 |
|
m1expe |
|- ( 2 || ( N - 1 ) -> ( -u 1 ^ ( N - 1 ) ) = 1 ) |
9 |
7 8
|
syl |
|- ( ph -> ( -u 1 ^ ( N - 1 ) ) = 1 ) |
10 |
9
|
oveq1d |
|- ( ph -> ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) = ( 1 x. ( A ^ N ) ) ) |
11 |
10
|
oveq1d |
|- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( 1 x. ( A ^ N ) ) + 1 ) ) |
12 |
1 2
|
pwp1fsum |
|- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
13 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
14 |
1 13
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
15 |
14
|
mulid2d |
|- ( ph -> ( 1 x. ( A ^ N ) ) = ( A ^ N ) ) |
16 |
15
|
oveq1d |
|- ( ph -> ( ( 1 x. ( A ^ N ) ) + 1 ) = ( ( A ^ N ) + 1 ) ) |
17 |
11 12 16
|
3eqtr3rd |
|- ( ph -> ( ( A ^ N ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |