Description: If every term in a sum with an odd number of terms is odd, then the sum is odd. (Contributed by AV, 14-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evensumodd.a | |- ( ph -> A e. Fin ) |
|
evensumodd.b | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
||
evensumodd.o | |- ( ( ph /\ k e. A ) -> -. 2 || B ) |
||
oddsumodd.a | |- ( ph -> -. 2 || ( # ` A ) ) |
||
Assertion | oddsumodd | |- ( ph -> -. 2 || sum_ k e. A B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evensumodd.a | |- ( ph -> A e. Fin ) |
|
2 | evensumodd.b | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
|
3 | evensumodd.o | |- ( ( ph /\ k e. A ) -> -. 2 || B ) |
|
4 | oddsumodd.a | |- ( ph -> -. 2 || ( # ` A ) ) |
|
5 | 1 2 3 | sumodd | |- ( ph -> ( 2 || ( # ` A ) <-> 2 || sum_ k e. A B ) ) |
6 | 4 5 | mtbid | |- ( ph -> -. 2 || sum_ k e. A B ) |