Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN ) |
6 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) |
7 |
|
dvdsval3 |
|- ( ( ( O ` A ) e. NN /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N mod ( O ` A ) ) = 0 ) ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || N <-> ( N mod ( O ` A ) ) = 0 ) ) |
9 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> A e. X ) |
10 |
1 4 3
|
mulg0 |
|- ( A e. X -> ( 0 .x. A ) = .0. ) |
11 |
9 10
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( 0 .x. A ) = .0. ) |
12 |
|
oveq1 |
|- ( ( N mod ( O ` A ) ) = 0 -> ( ( N mod ( O ` A ) ) .x. A ) = ( 0 .x. A ) ) |
13 |
12
|
eqeq1d |
|- ( ( N mod ( O ` A ) ) = 0 -> ( ( ( N mod ( O ` A ) ) .x. A ) = .0. <-> ( 0 .x. A ) = .0. ) ) |
14 |
11 13
|
syl5ibrcom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) = 0 -> ( ( N mod ( O ` A ) ) .x. A ) = .0. ) ) |
15 |
6
|
zred |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. RR ) |
16 |
5
|
nnrpd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR+ ) |
17 |
|
modlt |
|- ( ( N e. RR /\ ( O ` A ) e. RR+ ) -> ( N mod ( O ` A ) ) < ( O ` A ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) < ( O ` A ) ) |
19 |
6 5
|
zmodcld |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) |
20 |
19
|
nn0red |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. RR ) |
21 |
5
|
nnred |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR ) |
22 |
20 21
|
ltnled |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) < ( O ` A ) <-> -. ( O ` A ) <_ ( N mod ( O ` A ) ) ) ) |
23 |
18 22
|
mpbid |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> -. ( O ` A ) <_ ( N mod ( O ` A ) ) ) |
24 |
1 2 3 4
|
odlem2 |
|- ( ( A e. X /\ ( N mod ( O ` A ) ) e. NN /\ ( ( N mod ( O ` A ) ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( N mod ( O ` A ) ) ) ) |
25 |
|
elfzle2 |
|- ( ( O ` A ) e. ( 1 ... ( N mod ( O ` A ) ) ) -> ( O ` A ) <_ ( N mod ( O ` A ) ) ) |
26 |
24 25
|
syl |
|- ( ( A e. X /\ ( N mod ( O ` A ) ) e. NN /\ ( ( N mod ( O ` A ) ) .x. A ) = .0. ) -> ( O ` A ) <_ ( N mod ( O ` A ) ) ) |
27 |
26
|
3com23 |
|- ( ( A e. X /\ ( ( N mod ( O ` A ) ) .x. A ) = .0. /\ ( N mod ( O ` A ) ) e. NN ) -> ( O ` A ) <_ ( N mod ( O ` A ) ) ) |
28 |
27
|
3expia |
|- ( ( A e. X /\ ( ( N mod ( O ` A ) ) .x. A ) = .0. ) -> ( ( N mod ( O ` A ) ) e. NN -> ( O ` A ) <_ ( N mod ( O ` A ) ) ) ) |
29 |
28
|
con3d |
|- ( ( A e. X /\ ( ( N mod ( O ` A ) ) .x. A ) = .0. ) -> ( -. ( O ` A ) <_ ( N mod ( O ` A ) ) -> -. ( N mod ( O ` A ) ) e. NN ) ) |
30 |
29
|
impancom |
|- ( ( A e. X /\ -. ( O ` A ) <_ ( N mod ( O ` A ) ) ) -> ( ( ( N mod ( O ` A ) ) .x. A ) = .0. -> -. ( N mod ( O ` A ) ) e. NN ) ) |
31 |
9 23 30
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( N mod ( O ` A ) ) .x. A ) = .0. -> -. ( N mod ( O ` A ) ) e. NN ) ) |
32 |
|
elnn0 |
|- ( ( N mod ( O ` A ) ) e. NN0 <-> ( ( N mod ( O ` A ) ) e. NN \/ ( N mod ( O ` A ) ) = 0 ) ) |
33 |
19 32
|
sylib |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) e. NN \/ ( N mod ( O ` A ) ) = 0 ) ) |
34 |
33
|
ord |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( -. ( N mod ( O ` A ) ) e. NN -> ( N mod ( O ` A ) ) = 0 ) ) |
35 |
31 34
|
syld |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( N mod ( O ` A ) ) .x. A ) = .0. -> ( N mod ( O ` A ) ) = 0 ) ) |
36 |
14 35
|
impbid |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) = 0 <-> ( ( N mod ( O ` A ) ) .x. A ) = .0. ) ) |
37 |
1 2 3 4
|
odmod |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |
38 |
37
|
eqeq1d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( N mod ( O ` A ) ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
39 |
8 36 38
|
3bitrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
40 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( O ` A ) = 0 ) |
41 |
40
|
breq1d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( ( O ` A ) || N <-> 0 || N ) ) |
42 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> N e. ZZ ) |
43 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
44 |
42 43
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( 0 || N <-> N = 0 ) ) |
45 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> A e. X ) |
46 |
45 10
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( 0 .x. A ) = .0. ) |
47 |
|
oveq1 |
|- ( N = 0 -> ( N .x. A ) = ( 0 .x. A ) ) |
48 |
47
|
eqeq1d |
|- ( N = 0 -> ( ( N .x. A ) = .0. <-> ( 0 .x. A ) = .0. ) ) |
49 |
46 48
|
syl5ibrcom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( N = 0 -> ( N .x. A ) = .0. ) ) |
50 |
1 2 3 4
|
odnncl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. NN ) |
51 |
50
|
nnne0d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) =/= 0 ) |
52 |
51
|
expr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ N =/= 0 ) -> ( ( N .x. A ) = .0. -> ( O ` A ) =/= 0 ) ) |
53 |
52
|
impancom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N .x. A ) = .0. ) -> ( N =/= 0 -> ( O ` A ) =/= 0 ) ) |
54 |
53
|
necon4d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N .x. A ) = .0. ) -> ( ( O ` A ) = 0 -> N = 0 ) ) |
55 |
54
|
impancom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( ( N .x. A ) = .0. -> N = 0 ) ) |
56 |
49 55
|
impbid |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( N = 0 <-> ( N .x. A ) = .0. ) ) |
57 |
41 44 56
|
3bitrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) = 0 ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
58 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
59 |
58
|
3ad2ant2 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. NN0 ) |
60 |
|
elnn0 |
|- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
61 |
59 60
|
sylib |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
62 |
39 57 61
|
mpjaodan |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |