Step |
Hyp |
Ref |
Expression |
1 |
|
odcl2.1 |
|- X = ( Base ` G ) |
2 |
|
odcl2.2 |
|- O = ( od ` G ) |
3 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
4 |
|
eqid |
|- ( x e. ZZ |-> ( x ( .g ` G ) A ) ) = ( x e. ZZ |-> ( x ( .g ` G ) A ) ) |
5 |
1 2 3 4
|
dfod2 |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) ) |
6 |
5
|
3adant2 |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) = if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) ) |
7 |
|
simp2 |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> X e. Fin ) |
8 |
1 3 4
|
cycsubgcl |
|- ( ( G e. Grp /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
9 |
8
|
3adant2 |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
10 |
9
|
simpld |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) ) |
11 |
1
|
subgss |
|- ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) |
12 |
10 11
|
syl |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) |
13 |
7 12
|
ssfid |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) |
14 |
13
|
iftrued |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) = ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
15 |
6 14
|
eqtrd |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) = ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
16 |
1
|
lagsubg |
|- ( ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) || ( # ` X ) ) |
17 |
10 7 16
|
syl2anc |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) || ( # ` X ) ) |
18 |
15 17
|
eqbrtrd |
|- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) || ( # ` X ) ) |