| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl2.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odcl2.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 4 |  | eqid |  |-  ( x e. ZZ |-> ( x ( .g ` G ) A ) ) = ( x e. ZZ |-> ( x ( .g ` G ) A ) ) | 
						
							| 5 | 1 2 3 4 | dfod2 |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) ) | 
						
							| 6 | 5 | 3adant2 |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) = if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) ) | 
						
							| 7 |  | simp2 |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> X e. Fin ) | 
						
							| 8 | 1 3 4 | cycsubgcl |  |-  ( ( G e. Grp /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) | 
						
							| 10 | 9 | simpld |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) ) | 
						
							| 11 | 1 | subgss |  |-  ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) | 
						
							| 13 | 7 12 | ssfid |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) | 
						
							| 14 | 13 | iftrued |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) = ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) | 
						
							| 15 | 6 14 | eqtrd |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) = ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) | 
						
							| 16 | 1 | lagsubg |  |-  ( ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) || ( # ` X ) ) | 
						
							| 17 | 10 7 16 | syl2anc |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) || ( # ` X ) ) | 
						
							| 18 | 15 17 | eqbrtrd |  |-  ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) || ( # ` X ) ) |