| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odcl.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | odid.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | odid.4 |  |-  .0. = ( 0g ` G ) | 
						
							| 5 |  | simp3 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( O ` A ) || N ) | 
						
							| 6 |  | dvdszrcl |  |-  ( ( O ` A ) || N -> ( ( O ` A ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ( O ` A ) || N -> N e. ZZ ) | 
						
							| 8 | 1 2 3 4 | oddvds |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) | 
						
							| 9 | 7 8 | syl3an3 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) | 
						
							| 10 | 5 9 | mpbid |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( N .x. A ) = .0. ) |