Metamath Proof Explorer


Theorem oddz

Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020)

Ref Expression
Assertion oddz
|- ( Z e. Odd -> Z e. ZZ )

Proof

Step Hyp Ref Expression
1 isodd
 |-  ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) )
2 1 simplbi
 |-  ( Z e. Odd -> Z e. ZZ )