Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
nn0z |
|- ( y e. NN0 -> y e. ZZ ) |
6 |
1 2 3 4
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ y e. ZZ ) -> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
7 |
5 6
|
syl3an3 |
|- ( ( G e. Grp /\ A e. X /\ y e. NN0 ) -> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
8 |
7
|
3expa |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. NN0 ) -> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
9 |
8
|
ralrimiva |
|- ( ( G e. Grp /\ A e. X ) -> A. y e. NN0 ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) |
10 |
|
breq1 |
|- ( N = ( O ` A ) -> ( N || y <-> ( O ` A ) || y ) ) |
11 |
10
|
bibi1d |
|- ( N = ( O ` A ) -> ( ( N || y <-> ( y .x. A ) = .0. ) <-> ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) ) |
12 |
11
|
ralbidv |
|- ( N = ( O ` A ) -> ( A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) <-> A. y e. NN0 ( ( O ` A ) || y <-> ( y .x. A ) = .0. ) ) ) |
13 |
9 12
|
syl5ibrcom |
|- ( ( G e. Grp /\ A e. X ) -> ( N = ( O ` A ) -> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |
14 |
13
|
3adant3 |
|- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( N = ( O ` A ) -> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |
15 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N e. NN0 ) |
16 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> A e. X ) |
17 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
18 |
16 17
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( O ` A ) e. NN0 ) |
19 |
1 2 3 4
|
odid |
|- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
20 |
16 19
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( ( O ` A ) .x. A ) = .0. ) |
21 |
17
|
3ad2ant2 |
|- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( O ` A ) e. NN0 ) |
22 |
|
breq2 |
|- ( y = ( O ` A ) -> ( N || y <-> N || ( O ` A ) ) ) |
23 |
|
oveq1 |
|- ( y = ( O ` A ) -> ( y .x. A ) = ( ( O ` A ) .x. A ) ) |
24 |
23
|
eqeq1d |
|- ( y = ( O ` A ) -> ( ( y .x. A ) = .0. <-> ( ( O ` A ) .x. A ) = .0. ) ) |
25 |
22 24
|
bibi12d |
|- ( y = ( O ` A ) -> ( ( N || y <-> ( y .x. A ) = .0. ) <-> ( N || ( O ` A ) <-> ( ( O ` A ) .x. A ) = .0. ) ) ) |
26 |
25
|
rspcva |
|- ( ( ( O ` A ) e. NN0 /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || ( O ` A ) <-> ( ( O ` A ) .x. A ) = .0. ) ) |
27 |
21 26
|
sylan |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || ( O ` A ) <-> ( ( O ` A ) .x. A ) = .0. ) ) |
28 |
20 27
|
mpbird |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N || ( O ` A ) ) |
29 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
30 |
|
iddvds |
|- ( N e. ZZ -> N || N ) |
31 |
15 29 30
|
3syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N || N ) |
32 |
|
breq2 |
|- ( y = N -> ( N || y <-> N || N ) ) |
33 |
|
oveq1 |
|- ( y = N -> ( y .x. A ) = ( N .x. A ) ) |
34 |
33
|
eqeq1d |
|- ( y = N -> ( ( y .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
35 |
32 34
|
bibi12d |
|- ( y = N -> ( ( N || y <-> ( y .x. A ) = .0. ) <-> ( N || N <-> ( N .x. A ) = .0. ) ) ) |
36 |
35
|
rspcva |
|- ( ( N e. NN0 /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || N <-> ( N .x. A ) = .0. ) ) |
37 |
36
|
3ad2antl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N || N <-> ( N .x. A ) = .0. ) ) |
38 |
31 37
|
mpbid |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( N .x. A ) = .0. ) |
39 |
1 2 3 4
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
40 |
29 39
|
syl3an3 |
|- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
41 |
40
|
adantr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
42 |
38 41
|
mpbird |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> ( O ` A ) || N ) |
43 |
|
dvdseq |
|- ( ( ( N e. NN0 /\ ( O ` A ) e. NN0 ) /\ ( N || ( O ` A ) /\ ( O ` A ) || N ) ) -> N = ( O ` A ) ) |
44 |
15 18 28 42 43
|
syl22anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. NN0 ) /\ A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) -> N = ( O ` A ) ) |
45 |
44
|
ex |
|- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) -> N = ( O ` A ) ) ) |
46 |
14 45
|
impbid |
|- ( ( G e. Grp /\ A e. X /\ N e. NN0 ) -> ( N = ( O ` A ) <-> A. y e. NN0 ( N || y <-> ( y .x. A ) = .0. ) ) ) |