Step |
Hyp |
Ref |
Expression |
1 |
|
od1.1 |
|- O = ( od ` G ) |
2 |
|
od1.2 |
|- .0. = ( 0g ` G ) |
3 |
|
odeq1.3 |
|- X = ( Base ` G ) |
4 |
|
oveq1 |
|- ( ( O ` A ) = 1 -> ( ( O ` A ) ( .g ` G ) A ) = ( 1 ( .g ` G ) A ) ) |
5 |
4
|
eqcomd |
|- ( ( O ` A ) = 1 -> ( 1 ( .g ` G ) A ) = ( ( O ` A ) ( .g ` G ) A ) ) |
6 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
7 |
3 6
|
mulg1 |
|- ( A e. X -> ( 1 ( .g ` G ) A ) = A ) |
8 |
3 1 6 2
|
odid |
|- ( A e. X -> ( ( O ` A ) ( .g ` G ) A ) = .0. ) |
9 |
7 8
|
eqeq12d |
|- ( A e. X -> ( ( 1 ( .g ` G ) A ) = ( ( O ` A ) ( .g ` G ) A ) <-> A = .0. ) ) |
10 |
9
|
adantl |
|- ( ( G e. Grp /\ A e. X ) -> ( ( 1 ( .g ` G ) A ) = ( ( O ` A ) ( .g ` G ) A ) <-> A = .0. ) ) |
11 |
5 10
|
syl5ib |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 1 -> A = .0. ) ) |
12 |
1 2
|
od1 |
|- ( G e. Grp -> ( O ` .0. ) = 1 ) |
13 |
12
|
adantr |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` .0. ) = 1 ) |
14 |
|
fveqeq2 |
|- ( A = .0. -> ( ( O ` A ) = 1 <-> ( O ` .0. ) = 1 ) ) |
15 |
13 14
|
syl5ibrcom |
|- ( ( G e. Grp /\ A e. X ) -> ( A = .0. -> ( O ` A ) = 1 ) ) |
16 |
11 15
|
impbid |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 1 <-> A = .0. ) ) |