| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odcl.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | c0ex |  |-  0 e. _V | 
						
							| 4 |  | ltso |  |-  < Or RR | 
						
							| 5 | 4 | infex |  |-  inf ( w , RR , < ) e. _V | 
						
							| 6 | 3 5 | ifex |  |-  if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V | 
						
							| 7 | 6 | csbex |  |-  [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V | 
						
							| 8 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 10 | 1 8 9 2 | odfval |  |-  O = ( y e. X |-> [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) ) | 
						
							| 11 | 7 10 | fnmpti |  |-  O Fn X | 
						
							| 12 | 1 2 | odcl |  |-  ( x e. X -> ( O ` x ) e. NN0 ) | 
						
							| 13 | 12 | rgen |  |-  A. x e. X ( O ` x ) e. NN0 | 
						
							| 14 |  | ffnfv |  |-  ( O : X --> NN0 <-> ( O Fn X /\ A. x e. X ( O ` x ) e. NN0 ) ) | 
						
							| 15 | 11 13 14 | mpbir2an |  |-  O : X --> NN0 |